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Preface

Sophus Lie (1842-1899) was a Norwegian mathematician, who created an
algebraic language (Lie algebras) to deal with the notion of symmetry in the
analytic setting (Lie groups).
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1 Constructions of linear algebra

Suppose U, V are two finite dimensional complex vector spaces. The set
theoretic direct product U × V has a natural vector space structure by com-
ponentwise addition and scalar multiplication, so

(u1, v1) + (u2, v2) := (u1 + u2, v1 + v2), λ(u, v) := (λu, λv)

for all u1, u2, u ∈ U , v1, v2, v ∈ V and λ ∈ C. This vector space is denoted
U ⊕ V and is called the direct sum of U and V . It is easy to check that
dim(U ⊕ V ) = dimU + dim V .

The set of all linear maps A : U → V has a natural vector space structure
under pointwise addition and scalar multiplication, so

(A1 + A2)(u) := A1u+ A2u, (λA)(u) = λ(Au)

for all linear maps A1, A2, A : U → V and all u ∈ U and λ ∈ C. We denote
this vector space Hom(U, V ). It is easy to check that dimHom(U, V ) =
dimU dimV . We also denote Hom(U, U) by End(U). The vector space
Hom(U,C) is also denoted U∗ and called the dual vector space of U .

Suppose U, V,W are three finite dimensional complex vector spaces. A
map b : U×V → W is called bilinear if for fixed v ∈ V the map U →W, u 7→
b(u, v) is linear, and likewise for fixed u ∈ U the map V → W, v 7→ b(u, v)
is linear. The tensor product of the vector spaces U and V is a vector space
U ⊗ V together with a bilinear map i : U × V → U ⊗ V , also denoted
i(u, v) = u ⊗ v for u ∈ U and v ∈ V , such that for each bilinear map
b : U × V → W to a third vector space W there exists a unique linear map
B : U ⊗ V → W with b(u, v) = B(u ⊗ v) for all u ∈ U and v ∈ V . The
linear map B is called the lift of the bilinear map b (from the direct product
U × V to the tensor product U ⊗ V ). The uniqueness of the linear map B
implies that the cone {u ⊗ v; u ∈ U, v ∈ V } of pure tensors in U ⊗ V spans
the vector space U ⊗ V . Here we use the word cone for a subset of a vector
space, that is invariant under scalar multiplication.

The tensor product is unique up to natural isomorphism. Indeed, if U⊠V
is another tensor product with associated bilinear map j : U × V → U ⊠ V
and j(u, v) = u⊠ v then there exist unique linear lifts

J : U ⊗ V → U ⊠ V, J(u⊗ v) = u⊠ v
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of j : U × V → U ⊠ V and

I : U ⊠ V → U ⊗ V, I(u⊠ v) = u⊗ v

of i : U × V → U ⊗ V , and so IJ = idU⊗V and JI = idU⊠V . Hence I and J
are inverses of each other.

For the existence of the tensor product we can take for U ⊗ V the free
vector space F (U × V ) on the set U × V modulo the linear subspace of
F (U × V ) spanned by the elements

(u1 + u2, v)− (u1, v)− (u2, v), (λu, v)− λ(u, v)

(u, v1 + v2)− (u, v1)− (u, v2), (u, λv)− λ(u, v)

for all u1, u2, u ∈ U , v1, v2, v ∈ V and λ ∈ C.
If A ∈ End(U) and B ∈ End(V ) then A⊗B ∈ End(U ⊗ V ) is defined by

(A⊗B)(u⊗ v) = A(u)⊗B(v) for all u ∈ U and v ∈ V . If A1, A2 ∈ End(U)
and B1, B2 ∈ End(V ) then clearly (A1 ⊗ B1)(A2 ⊗ B2) = (A1A2)⊗ (B1B2).

The bilinear map U∗ × V → Hom(U, V ) sending the pair (f, v) to the
linear map u 7→ f(u)v lifts to a linear map U ⊗V → Hom(U, V ) sending the
pure tensor f ⊗ v to the linear map u 7→ f(u)v. It is easy to see that this
linear map is a linear isomorphism, and so we have a natural isomorphism
U∗ ⊗ V ∼= Hom(U, V ).

The tensor product of vector spaces is associative in the sense that the
linear spaces (U⊗V )⊗W and U⊗(V ⊗W ) are naturally isomorphic. Likewise
(A⊗B)⊗C ∼= A⊗ (B⊗C) on (U⊗V )⊗W ∼= U⊗ (V ⊗W ) for A ∈ End(U),
B ∈ End(V ) and C ∈ End(W ). The tensor algebra TV on the vector space
V is defined as the graded direct sum ⊕TkV with TkV inductively defined
by T0V = C and Tk+1V = TkV ⊗ V for all k ∈ N. By associativety we
have TkV ⊗ TlV ∼= Tk+lV for all k, l ∈ N, and so TV = ⊕TkV becomes
a graded associative algebra with respect to the tensor product map ⊗ as
multiplication.

There are two graded ideals I±V = ⊕Ik±V of TV generated (through
left and right multiplications) by the degree two tensors (v1 ⊗ v2 ± v2 ⊗ v1)
for all v1, v2 ∈ V . The quotient algebras SV = ⊕SkV = TV/I−V and
∧V = ⊕ ∧k V = TV/I+V are the so called symmetric algebra and exterior
algebra on V respectively. The symmetric algebra SV is commutative for the
induced multiplication, and this multiplication is usually suppressed in the
notation (like with multiplication in a group). The induced multiplication

5



on the exterior algebra ∧V is denoted by ∧ and called the wedge product.
We have α ∧ β = (−1)klβ ∧ α for α ∈ ∧kV and β ∈ ∧lV .

In case V = U∗ is the dual space of a vector space U then TkV can be
identified with the space of scalar valued multilinear forms in k arguments
from U . Here multilinear is used in the sense that, if all arguments except one
remain fixed, then the resulting form is linear in that one argument. In turn
SV = PU = ⊕PkU can be identified with the space of polynomial functions
on U by restriction to the main diagional in Uk. Likewise ∧kV = ∧kU∗ can
be identified with the space of alternating multilinear forms in k arguments
from U . So α ∈ ∧kU∗ means that α is multilinear in k arguments from U and
α(uσ(1), · · · , uσ(k)) = ε(σ)α(u1, · · · , uk) for σ in the symmetric group Sk.

Exercise 1.1. Show that (U ⊗ V ) ⊗ W and U ⊗ (V ⊗ W ) are naturally
isomorphic for U, V,W vector spaces.

Exercise 1.2. Show that for A ∈ End(U), B ∈ End(V ) and so A ⊗ B ∈
End(U ⊗ V ) we have tr(A⊗ B) = tr(A)tr(B).

Exercise 1.3. Show that for a vector space V of dimension n one has

dimSkV =

(

n+ k − 1

k

)

, dim∧kV =

(

n

k

)

for all k ∈ N.
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2 Representations of groups

Throughout this section let G be a group and U, V,W finite dimensional
vector spaces over the complex numbers.

A representation of a group G on a vector space V is a homomorphism
ρ : G → GL(V ). Note that necessarily V is nonzero. So a representation
of G will be given by a pair (ρ, V ) with V a finite dimensional vector space,
called the representation space, and ρ : G → GL(V ) a homomorphism. If
ρ(x) = 1 for all x ∈ G then we speak of the trivial representation of G on V .
A linear subspace U of a representation space V of G is called invariant if for
all x ∈ G and all u ∈ U we have ρ(x)u ∈ U . If in addition U is nonzero then
we get a subrepresentation (ρU , U) of (ρ, V ) defined by ρU(x) = ρ(x)|U for
all x ∈ G. Likewise, if U is a proper invariant subspace of V then we get a
quotient representation (ρV/U , V/U) defined by ρV/U (x)(v+U) = ρ(x)(v)+U
for x ∈ G and v ∈ V .

We say that a representation (ρ, V ) of G is irreducible if the only two
invariant linear subspaces of V are the trivial invariant linear subspaces {0}
and V . For example, the trivial representation of G on V is irreducible if
and only if dimV = 1. If (ρ, V ) is a representation of a group G and H < G
is a subgroup then by restriction (ρ, V ) becomes also a representation of H .
This process is called branching or symmetry breaking from G to H .

Using constructions of linear algebra one can make new representations
from old ones. For example, the outer tensor product of two representations
(ρ1, V1) of a group G1 and (ρ2, V2) of a group G2. The outer tensor product
ρ1⊠ ρ2 is a representation of the direct product group G1×G2 on the vector
space V1⊗V2, and is defined by (ρ1⊠ρ2)(x1, x2) = ρ1(x1)⊗ρ2(x2) for x1 ∈ G1

and x2 ∈ G2. If G1 = G2 = G then the inner tensor product ρ1 ⊗ ρ2 of two
representations (ρ1, V1) and (ρ2, V2) of the same group G is a representation
of that group G on V1⊗V2, which is defined by (ρ1⊗ρ2)(x) = (ρ1(x))⊗(ρ2(x))
for x ∈ G. So the inner tensor product is obtained from the outer tensor
product by branching from the direct product group G× G to the diagonal
subgroup G.

If (ρ, V ) is a representation of a group G then we also get representations
(Skρ, SkV ) and (∧kρ,∧kV ) of the same group G, called the symmetric power
and the wedge power representations of degree k respectively.

If A ∈ Hom(U, V ) then the dual linear map A∗ ∈ Hom(V ∗, U∗) will be
defined by (A∗f)u = f(Au) for f ∈ V ∗ and u ∈ U . It is easy to check
that (BA)∗ = A∗B∗ for A ∈ Hom(U, V ) and B ∈ Hom(V,W ). If (ρ, V )
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is a representation of a group G then the dual representation (ρ∗, V ∗) of
G is defined by ρ∗(x) = (ρ(x−1))∗ for x ∈ G. More generally, if (ρ, V )
and (σ,W ) are two representations of a group G then the representation
(Hom(ρ, σ),Hom(V,W )) of G is defined by Hom(ρ, σ)(x)A = σ(x)Aρ(x−1)
for x ∈ G and A ∈ Hom(V,W ).

If (ρ, V ) is a representation of a group G then we denote by V G the linear
subspace {v ∈ V ; ρ(x)v = v ∀x ∈ G} of V of fixed vectors. For example,
for representations (ρ, V ) and (σ,W ) of G the space Hom(V,W )G consists
of those A ∈ Hom(V,W ) for which Aρ(x) = σ(x)A for all x ∈ G. Such a
linear map A ∈ Hom(V,W ) is called an intertwining operator or simply an
intertwiner from (ρ, V ) to (σ,W ). The two representations (ρ, V ) and (σ,W )
of G are called equivalent if there exists an intertwiner Hom(V,W )G which
is also a linear isomorphism, and we write (ρ, V ) ∼ (σ,W ). The natural
isomorphism Hom(V,W ) ∼= V ∗⊗W gives an equivalence Hom(ρ, σ) ∼ ρ∗⊗σ
of representations.

However, in daily life people are sometimes sloppy and use the word
representation while equivalence class of representation is meant. Be aware
of that.

A representation (ρ, V ) of a group G is called completely reducible if
for any invariant subspace U of V there exists a complementary invariant
subspace U⊥. So U + U⊥ = V and U ∩ U⊥ = {0}, which is also denoted
V = U ⊕U⊥, and moreover U⊥ is invariant as well. We denote ρ = ρU ⊕ρU⊥

for this situation (strictly speaking if U, U⊥ are both nonzero).
Suppose the vector space V carries a Hermitian inner product 〈·, ·〉 :

V ×V → C, which by definition is a positive definite sesquilinear form on V ,
usually linear in the first argument and antilinear in the second argument,
and interchange of arguments amounts to complex conjugation. The pair
(V, 〈·, ·〉) is called a finite dimensional Hilbert space. A representation (ρ, V )
of a group G on a Hilbert space (V, 〈·, ·〉) is called unitary if

〈ρ(x)v1, ρ(x)v2〉 = 〈v1, v2〉

for all x ∈ G. So a unitary representation is a triple (ρ, V, 〈·, ·〉) with (V, 〈·, ·〉)
a Hilbert space and ρ : G → U(V, 〈·, ·〉) a homomorphism of G into the
unitary group of that Hilbert space.

Lemma 2.1. A unitary representation (ρ, V, 〈·, ·〉) of a group G is always
completely reducible.
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Proof. If U ⊂ V is an invariant subspace then the orthogonal complement
U⊥ = {v ∈ V ; 〈u, v〉 = 0 ∀ u ∈ U} is easily seen to be also invariant.

Theorem 2.2. Any representation (ρ, V ) of a finite group G is completely
reducible.

Proof. We claim that the representation (ρ, V ) is always unitarizable, that is
can be made unitary for some Hermitian inner product 〈·, ·〉 on V . Just pick
any Hermitian inner product 〈·, ·〉′ on V . By averaging over G we obtain a
new Hermitian inner product

〈v1, v2〉 =
1

|G|
∑

x∈G

〈ρ(x)v1, ρ(x)v2〉′

and it is easily checked that 〈ρ(x)v1, ρ(x)v2〉 = 〈v1, v2〉 for all x ∈ G. So
(ρ, V, 〈·, ·〉) becomes a unitary representation, and we can apply the above
lemma.

Remark 2.3. The above theorem has an extension to compact topological
groups and continuous finite dimensional representations of such groups. A
topological group G is both a topological space and a group, and the two
structures are compatible in the sense that multiplication G×G→ G, (x, y) 7→
xy and inversion G → G, x 7→ x−1 are continuous maps. Finite groups
are compact topological groups relative to the discrete topology, and so any
representation of a finite group is automatically continuous. The simplest
example of a compact topological group, which is not a finite group, is the
circle group R/2πZ. Geometrically R/2πZ ∼= U1(C) ∼= SO2(R) is the group
of rotations of the complex plane C ∼= R2 around the origin.

It is a nontrivial theorem of John von Neumann (1903-1957) that for any
compact topological group G there exists a positive measure µ that is invariant
under left and right multiplications. Such a measure µ on G assigns to a
continuous function f : G→ C by integration against µ a complex number

∫

G

f(x)dµ(x)

which is positive if f is positive and satisfies the invariance relations

∫

G

f(xy)dµ(x) =

∫

G

f(yx)dµ(x) =

∫

G

f(x)dµ(x)
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for all y ∈ G. Moreover, such a measure becomes unique by the normalization
∫

G
dµ(x) = 1. For the circle group R/2πZ with standard coordinate θ this

normalized invariant measure is just

1

2π

∫ 2π

0

f(θ)dθ

the usual Riemann integral. Now the proof of the above theorem carries
verbatim over to the present situation by using

〈v1, v2〉 =
∫

G

〈ρ(x)v1, ρ(x)v2〉′dµ(x)

in stead of the finite normalized sum as above.

The conclusion is that the representation theory of finite (or even com-
pact) groups boils down to two fundamental problems. In the first place
classify the equivalence classes of irreducible representations and preferably
give constructions and nice models for each of them. In the second place
decompose a given representation into irreducible ones.

An easy but important result is Schur’s lemma, which was found by Issai
Schur (1875-1941) in 1905.

Lemma 2.4. If (ρ, U) is an irreducible representation of a group G then the
vector space End(U)G of self intertwiners for (ρ, U) consists only of scalar
linear maps. If (ρ, U) and (σ, V ) are both irreducible representations of G
then either dimHom(U, V )G is equal to 1 if (ρ, U) ∼ (σ, V ) or is equal to 0
if (ρ, U) ≁ (σ, V ).

Proof. Suppose A ∈ End(U)G is a self intertwiner for (ρ, U). Since scalars
are self intertwiners we also have (A − λ) ∈ End(U)G for all λ ∈ C. If λ
is an eigenvalue of A then the eigenspace ker(A − λ) is a nonzero invariant
subspace of U and so equal to U itself by irreducibility of (ρ, U). Hence
A = λ for some λ ∈ C and the first statement follows.

Suppose A ∈ Hom(U, V )G is a nonzero intertwiner. Then kerA is a proper
invariant subspace of U and so is equal to {0} since (ρ, U) is irreducible. Also
imA is a nonzero invariant subspace of V and so is equal to V since (σ, V )
is irreducible. Hence any nonzero intertwiner A ∈ Hom(U, V )G is a linear
isomorphism and so gives an equivalence (ρ, U) ∼ (σ, V ) of representations.

If A,B ∈ Hom(U, V )G with A 6= 0 then BA−1 ∈ End(V )G is a self
intertwiner for (σ, V ). Hence BA−1 = λ for some λ ∈ C and so B = λA,
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which implies dimHom(U, V )G = 1. On the other hand, if (ρ, U) ≁ (σ, V )
then clearly dimHom(U, V )G = 0.

Corollary 2.5. An irreducible representation of an Abelian group is one
dimensional.

Proof. Suppose (ρ, V ) is an irreducible representation of an Abelian group
G. Then all linear operators ρ(x) for x ∈ G are self intertwiners, and hence
scalars by Schur’s lemma. Hence any linear subspace of V is invariant and
therefore dimV = 1 by the definition or irreducibility.

Exercise 2.1. Check that a positive linear combination of Hermitian inner
products on a vector space V is again a Hermitian inner product.

Exercise 2.2. Let Bn be the subgroup of the general linear group GLn(C) of
upper triangular matrices, so A = (aij) ∈ Bn if and only if aij = 0 for i > j.
Show that the natural representation of Bn on C

n is not completely reducible
for n ≥ 2.

Exercise 2.3. In this section all vector spaces were finite dimensional and
over the complex numbers C. Show that Schur’s lemma does not hold over
the real numbers R by looking at the real representation of the circle group

R/2πZ → GL2(R), θ 7→
(

cos θ − sin θ
sin θ cos θ

)

by rotations of the real plane R2.
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3 Character theory for finite groups

If V is a finite dimensional vector space with basis ei then the trace trA
of a linear map A : V → V , with matrix (aij) given by Aej =

∑

i aijei, is
defined by trA =

∑

i aii. One easily checks that tr(AB) = tr(BA) for all
A,B ∈ End(V ) and in particular tr (BAB−1) = trA in case detB 6= 0. In
turn this implies that trA is well defined, independent of the chosen basis.

Suppose G is a group and (ρ, V ) a finite dimensional representation. The
character χρ : G→ C of (ρ, V ) is defined by

χρ(x) = tr ρ(x)

for x ∈ G. For finite groups we will show that the character of a finite
dimensional representation characterizes the representation upto equivalence,
which explains the terminology character.

We list some simple properties of characters. Suppose (ρ, V ) and (σ,W )
are both representations of G. Clearly χρ = χσ if (ρ, V ) ∼ (σ,W ). It is also
clear that χρ(yxy

−1) = χρ(x) for all x, y ∈ G and so characters are constant
on conjugation classes of G. It is also obvious that χρ(e) = dimV . Finally

χρ⊕σ(x) = χρ(x) + χσ(x), χρ⊗σ(x) = χρ(x)χσ(x)

and (the second equality sign only for G a finite group)

χρ∗(x) = χρ(x
−1) = χρ(x)

for all x ∈ G.
From now on we shall assume that G is a finite group. Let L(G) denote

the vector space of complex valued functions on G. For φ, ψ ∈ L(G) we
define an Hermitian inner product

〈φ, ψ〉 = 1

|G|
∑

x∈G

φ(x)ψ(x)

turning L(G) into a finite dimensional Hilbert space. The linear subspace of
class functions in L(G), that is functions constant on conjugation classes, is
denoted C(G). So characters of representations of G are elements of C(G).

The next theorem states the so called Schur orthogonality relations for
the irreducible characters of G. The proof is a beautiful application of Schur’s
lemma, and was in fact the principal motivation for Schur to come up with
his lemma.
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Theorem 3.1. If (ρ, V ) and (σ,W ) are irreducible representations of a finite
group G then

〈χρ, χσ〉 = δρσ

with the Kronecker delta notation δρσ = 1 if ρ ∼ σ and δρσ = 0 if ρ ≁ σ.

Proof. Let (τ, U) be an arbitrary representation of G, and let UG be the
space of fixed vectors for G in U . Define the linear map

P : U → U, Pu =
1

|G|
∑

x∈G

τ(x)u

for u ∈ U . Then τ(x)P = P for all x ∈ G and hence P 2 = P . So P is a
linear projection operator with image imP = UG. In turn this implies

〈χτ , 1〉 =
1

|G|
∑

x∈G

tr(τ(x)) = tr(P ) = dimUG

as the trace is a linear form and the trace of a linear projection operator is
the dimension of its image.

If (ρ, V ) and (σ,W ) are irreducible representations of G then we shall
apply the above formula to the representation τ = Hom(ρ, σ) ∼ ρ∗ ⊗ σ
on the vector space U = Hom(V,W ) ∼= V ∗ ⊗ W as defined by τ(x)A =
σ(x)Aρ(x−1) for x ∈ G and A ∈ Hom(V,W ). Since by Schur’s lemma the
space of intertwiners UG = Hom(V,W )G has dimension δρσ we get

〈χσ, χρ〉 = 〈χρ∗χσ, 1〉 = 〈χρ∗⊗σ, 1〉 = 〈χHom(ρ,σ), 1〉 = δρσ

and the Schur orthogonality relations follow from 〈χρ, χσ〉 = δρσ = δρσ.

Suppose (ρ, V ) is a representation of G, which by complete reducibility
can be written (ρ1⊕· · ·⊕, ρm, V1⊕· · ·⊕Vm) as a direct sum of irreducibles. Let
(σ,W ) be an irreducible representation of G. Then the number of irreducible
components (ρi, Vi) in (ρ, V ) equivalent to (σ,W ) is equal to 〈χρ, χσ〉 ∈ N and
is called the multiplicity of (σ,W ) in (ρ, V ). The characters of the irreducible
representations of G are called the irreducible characters of G.

Corollary 3.2. Two representations of a finite group G with equal charac-
ters are equivalent, and so the character characterizes a representation upto
equivalence.
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Remark 3.3. The Schur orthogonality relations have a natural extension
from finite to compact groups. Indeed, let G be a compact group with µ the
normalized invariant measure on the space L(G) of continuous functions on
G. If (ρ, V ) and (σ,W ) are irreducible representations of G then we have

〈χρ, χσ〉 = δρσ

relative to the Hermitian inner product

〈φ, ψ〉 =
∫

G

φ(x)ψ(x)dµ(x)

of φ, ψ ∈ L(G).
For example, the circle group R/2πZ has irreducible representations

ρn : R/2πZ → GL1(C) = C
×, ρn(θ) = einθ

indexed by n ∈ Z. The Schur orthogonality relations amount to

1

2π

∫ 2π

0

ρm(θ)ρn(θ)dθ =
1

2π

∫ 2π

0

eimθe−inθdθ =
1

2π

∫ 2π

0

ei(m−n)θdθ = δmn

for m,n ∈ Z which are familiar from Fourier analysis. It is known from
Fourier analysis that the space of Fourier polynomials is dense in L2(R/2πZ)
which in turn implies that each irreducible representation of R/2πZ is equal
to ρn for some n ∈ Z.

As before let us assume that G is a finite group. If φ ∈ L(G) and (ρ, V )
is a representation of G then the linear operator

ρ(φ) =
1

|G|
∑

x∈G

φ(x)ρ(x) ∈ End(V )

has trace equal to trρ(φ) = 〈φ, χρ∗〉. If φ ∈ C(G) is a class function on G
then it is easy to check that ρ(φ) ∈ End(V )G is an intertwiner. If in addition
(ρ, V ) is irreducible then ρ(φ) is a scalar by Schur’s lemma. It follows by
taking traces that this scalar is equal to 〈φ, χρ∗〉/ dimV . Hence if φ ∈ C(G)
is orthogonal to all irreducible characters of G then by complete reducibility
ρ(φ) = 0 for any representation (ρ, V ) of G.

Theorem 3.4. The irreducible characters form an orthonormal basis of C(G)
with respect to the standard Hermitian inner product 〈·, ·〉.
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Proof. The left regular representation λ of G on the vector space L(G) is
defined by (λ(x)φ)(y) = φ(x−1y) for x, y ∈ G. The functions δx ∈ L(G) for
x ∈ G are defined by δx(y) = δxy for x, y ∈ G and form a basis of L(G) since
φ =

∑

x φ(x)δx for all φ ∈ L(G). Since λ(x)δy = δxy for x, y ∈ G we get
φ =

∑

x φ(x)λ(x)δe = |G|λ(φ)δe for φ ∈ L(G).
Let φ ∈ C(G) be a class function which is orthogonal to all irreducible

characters of G. Then ρ(φ) = 0 for any representation (ρ, V ) of G. Taking
(ρ, V ) equal to the left regular representation (λ,L(G)) we conclude that
λ(φ) = 0. Hence φ = |G|λ(φ)δe = 0 and so the result follows.

The dimension of the space C(G) of class functions is equal to the number
of conjugation classes in G. Hence the number of equivalence classes of
irreducible representations of G is equal to the number of conjugation classes
in G.

Example 3.5. The four group (in German Vierergruppe) V4 of Klein is a
group with a unit element e and three involutions a, b, c which in turn implies
ab = ba = c, bc = cb = a, ca = ac = b. The character table is a matrix of the
form

V4 e a b c
χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

where the rows are indexed by the irreducible characters and the columns are
indexed by representatives of the conjugation classes. The matrix element is
the value of the irreducible character at the conjugation class.

Example 3.6. The symmetric group S4 on 4 letters has character table

S4 e (12) (12)(34) (123) (1234)
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

with χ1 the trivial character, χ2 the sign character ε, χ3 the lift from the two
dimensional irreducible character of S3 via the isomorphism S4/V4

∼= S3,
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χ4 the character of the representation ρ4 via reflections and rotations of the
tetrahedron and χ5 = χ2χ4 the character of the representation ρ5 = ε ⊗ ρ4
of S4. In order to do Hermitian inner product calculations with charac-
ters one should check that the conjugation classes have 1, 6, 3, 8, 6 elements
respectively.

Example 3.7. The alternating group A4 on 4 letters has 4 conjugation
classes with representatives the unit e, a = (12)(34), b = (123), c = (132)
with 1, 3, 4, 4 elements respectively. The character table of A4 becomes

A4 e a b c
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 −1 0 0

with ω a nontrivial cube root of unity. The characters χi for i = 1, 2, 3 are
pull backs from the irreducible charcters of A4/V4, which is cyclic of order
3. The remaining irreducible character χ4 is just the restriction to A4 of the
character χ4 of S4.

Example 3.8. The alternating group A5 on 5 letters has 5 conjugation
classes with representatives the unit e, a = (12)(34), b = (123), c = (12345),
d = (13524) and with 1, 15, 20, 12, 12 elements respectively. The icosahedron
has 12 vertices, 30 edges and 20 faces in accordance with Euler’s formula
12− 30+ 20 = 2. The 15 lines through midpoints of opposite edges fall apart
in 5 orthogonal triples, giving an isomorphism from the rotation group of the
icosahedron onto A5. The class of a consists of order 2 rotations around any
of these 15 lines. The class of b consists of order 3 rotations, 2 around any
line through midpoints of opposite faces, so altogether 20. The rotations of
order 5 around the lines through opposite vertices fall into 2 classes of equal
size, namely 2 rotations over 2π/5 and 2 rotations over 4π/5 for each of
these 6 lines. The character table of A5 becomes

A5 e a b c d
χ1 1 1 1 1 1
χ2 3 −1 0 τ τ ′

χ3 3 −1 0 τ ′ τ
χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0
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with τ = (1 +
√
5)/2 the golden ratio and τ ′ = (1 −

√
5)/2 = −1/τ . These

two numbers are the roots of the equation x2−x−1 = 0. The representation
ρ2 via rotations of the icosahedron has character χ2 and ρ3 is its Galois
conjugate. The representation ρ4 with character χ4 is just the restriction of
the reflection representation from S5 to A5 while χ2χ3 = χ4 + χ5.

Exercise 3.1. Show that the character of the left regular representation of
a finite group G is equal to |G|δe. Show that each irreducible representation
representation of G occurs in the left regular representation with multiplicity
equal to the dimension of that irreducible representation. Conclude that the
sum of the squares of the dimensions of the irreducible representations is
equal to the order of the group.

Exercise 3.2. Let Q = {±1,±i,±j,±k} ⊂ SL2(C) with

1 =

(

1 0
0 1

)

, i =

(

i 0
0 −i

)

, j =

(

0 1
−1 0

)

, k =

(

0 i
i 0

)

.

Check that the relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

hold and conclude that Q is a subgroup of SL2(C), the so called quaternion
group. Show that Q/{±1} ∼= V4. Determine the conjugation classes in Q.
Find the character table of Q.

Exercise 3.3. Show that each irreducible character of a finite direct product
group G1 × G2 is of the form G1 × G2 ∋ (x, y) 7→ χ1(x)χ2(y) with χ1 an
irreducible character of G1 and χ2 an irreducible character of G2.

Exercise 3.4. Show that the irreducible characters of the group A5 × {±1}
of reflections and rotations of the icosahedron are of the form

χ±(x, 1) = χ(x), χ±(x,−1) = ±χ(x)

for x ∈ A5 and χ an irreducible character of A5.

Exercise 3.5. Show that a representation (ρ, V ) of a finite (or even compact)
group G is irreducible if its character χ ∈ C(G) has norm 1 for the standard
Hermitian inner product on L(G).
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4 Molecular vibrations after Wigner

Consider a molecule M in R3 with n atoms numbered 1, · · · , n. Suppose
that q = (q1, · · · , qn) ∈ R3n is an equilibrium position of M with qi ∈ R3

the position of the atom with number i. We consider small vibrations x =
(x1, · · · , xn) ∈ R3n in time t from the stationary equilibrium position q, and
so M is in position q + x. The kinetic energy K of this vibration x = x(t) is
equal to

K(ẋ) = (ẋ|ẋ)/2
with (x|y) = ((x1, · · · , xn)|(y1, · · · , yn)) =

∑

imi(xi, yi) with mi the mass of
the atom with number i and (·, ·) the standard inner product on R3. The
potential energy V is in harmonic approximation a homogeneous quadratic
polynomial

V (x) = (x|Hx)/2
with H : R3n → R3n a symmetric operator relative to (·|·), that is (Hx|y) =
(x|Hy) for all x, y ∈ R3n. Indeed, we may assume V (0) = 0 because the
potential is determined from the conservative force field F : R3n → R3n by
the equation F (x) = −∇V (x). The linear part of V vanishes because x = 0
is an equilibrium position and so F (0) = 0. Cubic and higher order terms of
V are ignored because x is small. Equivalently, the force field F (x) = −Hx
is a linear vector field. The equation of motion in the vibration space R3n

becomes
ẍ+Hx = 0

by Newton’s law.
Define the translation subspace T and the rotation subspace R of R3n by

T = {(u, · · · , u) ∈ R
3n; u ∈ R

3}
R = {(v × q1, · · · , v × qn); v ∈ R

3}

with × the vector product on R
3. If we assume that the potential energy V

is invariant under translations and rotations of M as a a whole, that is there
are no external forces onM , then V (x) = 0 for x ∈ T +R. If we assume that
M is not collinear then it can be shown that dimR = 3 and T ∩ R = {0},
and so we have an orthogonal direct sum decomposition

R
3n = V ⊕ T ⊕R

18



with V the so called internal vibration space of dimension 3n − 6. Since
H = 0 on T +R and H is symmetric we have H(V ) ⊂ V .

Finally we assume that q is a stable equilibrium position of M . This
means that all eigenvalues of H on V are strictly positive, and the square
roots of these eigenvalues are the frequencies of the eigenvibrations, after
reduction of translation and rotation symmetry. In general, if all eigenval-
ues of H on V have multiplicity one, then one measures (3n − 6) different
frequencies. However eigenspaces of H on V might have dimension ≥ 2, in
which case one speaks of (spectral) degeneration. The principal cause for
degeneration is symmetry of M as will be explained below.

Suppose that the atoms with number i and number j are of the same
kind if an only if mi = mj. If the center of gravity

∑

miqi/
∑

mi of M is
taken at the origin of R3 then the symmetry group G of the rigid body M
at rest in equilibrium position q = (q1, · · · , qn) ∈ R3n is given by

G = {a ∈ O(R3); ∀i ∃j with mi = mj and aqi = qj}.
As subgroup of O(R3) the group G has a standard representation π on R3

and we write χ(a) = tr a for its character. There is a natural homomorphism
G→ Sn, a 7→ σa given by σa(i) = j if and only if aqi = qj . We are now able
to define the vibration representation Π from G on the vibration space R3n

by
Π(a)(x1, · · · , xn) = (axσ−1

a (1), · · · , axσ−1
a (n))

for a ∈ G and x ∈ R3n. Indeed, one thinks of x = (x1, · · · , xn) ∈ R3n as a
set of arrows xj ∈ R3 with begin point qj and for a ∈ G the new arrow from
Π(a)x ∈ R

3n with begin point qj = aqi (and so σa(i) = j) is just axi ∈ R
3.

The next theorem is called Wigner’s rule.

Theorem 4.1. The character X of the vibration representation Π of the
symmetry group G of the molecule M on the total vibration space R3n is
given by

X(a) = |{i; σa(i) = i}| · χ(a)
for a ∈ G.

Proof. Think of the 3n×3n matrix Π(a) with scalar entries as a n×n matrix
with entries from End(R3). The matrix Π(a) is then the permutation matrix
of σa with nonzero matrix entries a. Hence the matrix Π(a) has on the main
diagonal place (i, i) the entry a from G < O(R3) if and only if σa(i) = i and
0 from End(R3) otherwise. Therefore Wigner’s rule is obvious.
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It is easy to check that the direct sum decomposition R3n = V ⊕ T ⊕ R
is invariant for the representation Π of G, and in fact we have

Π = ΠV ⊕ ΠT ⊕ ΠR ∼ ΠV ⊕ π ⊕ (det⊗π).
Indeed ΠT ∼ π is obvious, while ΠR ∼ det⊗π follows from a(u × v) =
det(a)(au× av) for all a ∈ O(R3) and u, v ∈ R3. Hence the character

XV = X − χ− det ·χ
of the internal vibration representation ΠV can be computed using Wigner’s
rule.

Since the potential energy V is invariant under G, that is since we have
V (Π(a)x) = V (x) for all a ∈ G and x ∈ R3n, we get the commutation relation

Π(a)H = HΠ(a)

for all a ∈ G. In other words H is an intertwiner for Π. This means that the
eigenvalue decomposition

V = ⊕νVν = ⊕ν{v ∈ V ;Hv = ν2v}
is invariant under Π. If the subrepresentation Πν on Vν is irreducible for all
ν > 0 then we say that the operator HV on V has natural degeneration for
G. If Vν is reducible for some ν > 0 then we speak of accidental degeneration.
Accidental degeneration might hint at a larger hidden symmetry group.

Let us discuss the example of the methane molecule CH4 with a carbon
atom at the origin and four hydrogen atoms at the four vertices (1, 1, 1),
(1,−1,−1), (−1, 1,−1), (−1,−1, 1) of a tetrahedron. The symmetry group
G is the reflection and rotation group of the tetrahedron and is isomorphic
to S4.

From the character table of S4 one gets the table

S4 e (12) (12)(34) (123) (1234)
| · | 1 6 3 8 6
χ1 1 1 1 1 1

det = χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0

χ = χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1
X 15 3 −1 0 −1
XV 9 3 1 0 −1
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with | · | the cardinality of the conjugation class, which in turn implies

〈XV , χ1〉 = (1 · 9 · 1 + 6 · 3 · 1 + 3 · 1 · 1 + 8 · 0 · 1 + 6 · −1 · 1)/24 = 1

〈XV , χ2〉 = (1 · 9 · 1 + 6 · 3 · −1 + 3 · 1 · 1 + 8 · 0 · 1 + 6 · −1 · −1)/24 = 0

〈XV , χ3〉 = (1 · 9 · 2 + 6 · 3 · 0 + 3 · 1 · 2 + 8 · 0 · −1 + 6 · −1 · 0)/24 = 1

〈XV , χ4〉 = (1 · 9 · 3 + 6 · 3 · 1 + 3 · 1 · −1 + 8 · 0 · 0 + 6 · −1 · −1)/24 = 2

〈XV , χ5〉 = (1 · 9 · 3 + 6 · 3 · −1 + 3 · 1 · −1 + 8 · 0 · 0 + 6 · −1 · 1)/24 = 0

and hence
XV = χ1 + χ3 + 2χ4.

The conclusion is that the internal vibration spectrum of methane in case
of natural degeneration has 4 frequencies, one mode transforming under ρ1
and with multiplicity dim ρ1 = 1, one mode transforming under ρ3 with mul-
tiplicity dim ρ3 = 2 and two modes transforming under ρ4 with multiplicity
dim ρ4 = 3.

The symmetry results of this section give only qualitative information
about the nature of spectral degeneration. For finer quantitative information
about the location of the spectral lines one needs the further knowledge about
the masses mi and the Hessian H of the potential.

Remark 4.2. Usually in representation theory one considers representations
on complex vector spaces. However, in this section we have tacitly worked
with representations on real vector spaces. So some care is required with
the concept of irreducible characters over R or C, in the sense that a real
irreducible character can be either a complex irreducible character or a sum
of a complex irreducible character and its complex conjugate. However, in the
two examples discussed in this section, the group of reflections and rotations
of the tetrahedron (in the case of methane) or the icosahedron (in the case
of the buckyball) all complex irreducible characters are real valued, and real
irreducible characters are complex irreducible characters as well.

Symmetry arguments also give so called selection rules. If one shines light
on the molecule M with vibrations of M as a result then only light of par-
ticular wave length is absorbed in accordance with the particular frequencies
ν > 0 of M (or equivalently with particular eigenvalues ν2 of the symmet-
ric operator H on V ). If the spectrum has natural degeneration, then to
each frequency ν one associates the irreducible representation ρν of G on the
eigenspace Vν of H on V .
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In ordinary spectroscopy one will only see those frequencies ν of M for
which the irreducible representation ρν occurs as a subrepresentation of the
standard representation ρ of G on R3. This ordinary spectrum is usually
seen in infrared. There is also the so called Raman spectrum, which sees
only those frequencies ν for which the irreducible representation ρν occurs
as subrepresentation of the second symmetric power S2ρ of the standard
representation ρ of G on R3. The Raman spectrum is a second order scat-
tering effect, and is usually seen in ultraviolet. For the mathematics behind
these selection rules see the text book Shlomo Sternberg, Group theory and
physics, Cambridge University Press, 1994.

The results of this section were obtained by Eugene Wigner (1902-1995)
in 1930. In the nineteen twenties and thirties Wigner made various significant
applications of representation theory of groups to physics, for which he was
awarded the Nobel prize in physics in 1963.

Exercise 4.1. Show that the dimension of the rotation subspace R of R3n is
equal to 3 if rk{q1, · · · , qn} ≥ 2. Show that T ∩R = {0} if q1, · · · , qn are not
collinear.

Exercise 4.2. Show that for a moleculeM whose symmetry group G contains
the central inversion −1 the ordinary spectrum and the Raman spectrum are
disjoint (under the usual assumption of natural degeneration).

Exercise 4.3. For G < O3(R) a finite group let π denote the standard three
dimensional representation and χ its character. For u ∈ R3 let L(u) be the
skew symmetric linear operator on R3 defined by L(u)v = u × v. Show that
L is an intertwiner from det⊗π to ∧2π and conclude that the character of
S2π is equal to (χ− det)χ.

Exercise 4.4. The buckyball C60 is a molecule with 60 carbon atoms at the
vertices of a truncated icosahedron. The symmetry group of the buckyball
is the reflection and rotation group of the icosahedron and is isomorphic to
A5×{±1}. Show that the character X of the natural representation Π of the
symmetry group G ∼= A5 ×{±1} of the buckyball on the total vibration space
R180 takes the value 180 at the identity element e, the value 4 at the class of
the reflection −a and the value 0 otherwise. If ψ =

∑

χi,+ +
∑

χi,− in the
notation of Exercise 3.4 then check that ψ(e) = 32 and ψ(−a) = 0. Show
that 〈X,ψ〉 = 48 and conclude that the internal vibration spectrum of C60

in case of natural degeneration has 46 frequencies. Show that the ordinary
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spectrum of C60 has only 4 frequencies, while the Raman spectrum has 10
frequencies.

The German-Canadian physicist and physical chemist Gerhard Herzberg
(1904-1999), who won the Nobel prize for Chemistry in 1971, wrote in the
nineteen fifties a highly influential four volume text book Molecular Spectra
and Molecular Structure, sometimes referred to as the bible of spectroscopy.
In volume I he lists all the finite subgroups of the orthogonal group O3(R)
of Euclidean space as possible molecular symmetry groups. The icosahedral
group occurred in his list, but he added in a footnote that it is highly unlikely
that this group will appear in nature as symmetry group. The experimental
discovery in 1985 of C60 with its rich icosahedral symmetry came therefore
as a big surprise. For this work Curl, Kroto and Smalley were awarded the
Nobel prize for Chemistry in 1996. For their discovery of the flat analogue of
the bucky ball, the so called graphene molecule, Andre Geim and Konstantin
Novoselov were awarded the Nobel prize for Physics in 2010. Earlier that year
Andre Geim was appointed honorary professor at the Radboud University
Nijmegen, helping our university to win its first Nobel prize.
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5 The spin homomorphism

Since for z1, z2, w1, w2 ∈ C

(

z1 w1

−w1 z1

)(

z2 w2

−w2 z2

)

=

(

z1z2 − w1w2 z1w2 + w1z2
−w1z2 − z1w2 −w1w2 + z1z2

)

it follows that

H =

{(

z w
−w z

)

; z, w ∈ C

}

is an associative algebra over R of dimension 4, called the quaternion alge-
bra. They were introduced by William Hamilton (1805-1865) on Monday 16
October 1843, who carved their multiplication rule

i2 = j2 = k2 = ijk = −1

for the real basis

1 =

(

1 0
0 1

)

, i =

(

i 0
0 −i

)

, j =

(

0 1
−1 0

)

, k =

(

0 i
i 0

)

.

into a stone of Brougham Bridge over the Royal Canal in Dublin, as he
paused on it. We shall write quaternions as

q = z + wj = u0 + u1i+ u2j + u3k

with z = u0 + u1i, w = u2 + u3i ∈ C and u0, u1, u2, u3 ∈ R. We denote
by q = u0 − u1i − u2j − u3k the conjugate quaternion of q. The norm
|q| = √

det q =
√
qq is a multiplicative map from H to R≥0, turning H into

an associative division algebra. This means that every nonzero quaternion q
has an inverse, indeed namely q/|q|2. We shall denote ℜq = u0 ∈ R for the
real part and ℑq = u1i+ u2j + u3k ∈ R

3 for the imaginary part of q ∈ H. A
quaternion q is called real if q = ℜq and purely imaginary if q = ℑq.

The norm 1 quaternions form a group denoted SU2(C) ∼= U1(H) just like
the norm 1 complex numbers form a group denoted SO2(R) ∼= U1(C). Both
SU2(C) and SO2(R) are smooth manifolds, the latter the unit circle and the
former the unit sphere of dimension 3. The multiplication and inversion on
SU2(C) and SO2(R) is given by smooth maps and as such these are primary
examples of compact Lie groups.
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Let SO3(R) be the special orthogonal group of the Euclidean space R3.
In the sequel we shall identify R3 with the subspace of purely imaginary
quaternions in H. The map

π : SU2(C) → GL3(R), π(q)(u) = quq

for q ∈ SU2(C) and u ∈ R3 is called the spin homomorphism.

Theorem 5.1. The spin homomorphism π : SU2(C) ։ SO3(R) has image
SO3(R) and kernel ±1.

Proof. For q ∈ H we have q ∈ SU2(C) if an only if q = q−1 which in turn
implies that π : SU2(C) → GL3(R) is a homomorphism. In order to see that
the image of π is contained in SO3(R) we use the formula

uv = (u, v) + u× v

for u, v ∈ R3 expressing the multiplication of purely imaginary quaternions
in terms of the scalar product (·, ·) and vector product · × · on R3. It follows
that

(π(q)u, π(q)v) = (u, v), (π(q)u)× (π(q)v) = π(q)(u× v)

for all u, v ∈ R3 and therefore π(q) ∈ SO3(R) for all q ∈ SU2(C).
Since the center of H is equal to R it follows that q ∈ SU2(C) commutes

with all purely imaginary quaternions if and only if q = ±1.
It remains to check that the image of π equals SO3(R). It is known (and

due to Leonard Euler (1707-1783) in his work on rigid body motions) that
each element r of SO3(R) is a rotation around a directed axis Rw for some
unit vector w ∈ R3 over an angle θ ∈ θ ∈ R/2πZ. In other words, such a
rotation r is given by

ru = u cos θ + v sin θ, rv = −u sin θ + v cos θ, rw = w

in an orthonormal basis {u, v, w} of R3 with u× v = w. The straightforward
verification that the unit quaternion q = cos θ + w sin θ satisfies π(q) = r is
left to the reader. Hence the theorem follows.

By the homomorphism theorem it follows that SU2(C)/{±1} ∼= SO3(R).
Geometrically the group SU2(C) is the unit sphere S3 of dimension 3. The
spin homomorphism identifies antipodal points and so geometrically SO3(R)
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is just the real projective space P3(R) of dimension 3. The orthogonal pro-
jection map

ℜ : SU2(C) → [−1, 1]

is a class function on SU2(C) and the conjugation classes are in fact the level
surfaces of this map. The two conjugation classes ℜ−1(±1) = ±1 are just
points and the remaining classes are spheres of dimension 2. Hence the circle
subgroup R/2πZ ∼= U1(C) of SU2(C) ∼= U1(H) intersects each conjugation
class in at most 2 points, which are inverses of each other.

Lemma 5.2. If µE is the Euclidean measure on the unit sphere S3 in H then
for each class function φ ∈ C(SU2(C)) we have the integral formula

∫

S3

φ(x)dµE(x) = 2π

∫ 2π

0

φ(cos θ + i sin θ) sin2 θdθ

and so the Euclidean volume of S3 is equal to 2π2.

Proof. For 0 < θ < π the conjugation class of the element (cos θ + i sin θ) in
SU2(C) is a sphere of dimension 2 with radius sin θ and so with Euclidean
area 4π sin2 θ. Since class functions on SU2(C) restrict to even even functions
on U1(C) ∼= R/2πZ the integral formula follows from calculus. The Euclidean
volume of S3 follows from this integral formula by taking φ = 1.

Corollary 5.3. If µ is the normalized invariant measure on SU2(C) then

∫

SU2(C)

φ(x)dµ(x) =
1

4π

∫ 2π

0

φ(cos θ + i sin θ)∆(θ)∆(θ)dθ

with φ ∈ C(SU2(C)) a class function on SU2(C) and ∆(θ) = (eiθ − e−iθ) an
odd integral Fourier polynomial on U1(C) ∼= R/2πZ.

Theorem 5.4. The restriction of the irreducible characters of SU2(C) to
U1(C) are of the form

χn(cos θ + i sin θ) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin(n+ 1)θ

sin θ

for some n ∈ N = {0, 1, 2, · · · }.
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Proof. Let (ρ, V ) be an irreducible representation of SU2(C) with irreducible
character χ = tr ρ a class function on SU2(C). The irreducible represen-
tations of the circle group U1(C) ∼= R/2πZ were shown to be of the form
ρn(e

iθ) = einθ for some n ∈ Z. The restriction χ(cos θ+i sin θ) of χ to U1(C) is
an even integral Fourier polynomial, and so the function χ(cos θ+i sin θ)∆(θ)
is an odd integral Fourier polynomial. Note that the Fourier coefficients of
the χ(cos θ + i sin θ) are all ≥ 0.

Taking φ = χχ in the integral formula of the above corollary yields

1

2π

∫ 2π

0

χ(cos θ + i sin θ)∆(θ)χ(cos θ + i sin θ)∆(θ)dθ = 2

by the Schur orthogonality relation 〈χ, χ〉 = 1. Writing

χ(cos θ + i sin θ)∆(θ) =
∑

ane
inθ

this amounts to
∑

anan = 2 and since a−n = −an also to
∑

n>0 anan = 1.
By integrality of an we conclude that all an for n > 0 are equal to 0 with the
exception of one, which is equal to ±1. In other words, we have

χn(cos θ + i sin θ)∆(θ) = ±(ei(n+1)θ − e−i(n+1)θ)

for some n ≥ 0. Since all Fourier coefficients of χn(cos θ+ i sin θ) are ≥ 0 the
± becomes + and the theorem follows.

Remark 5.5. The irreducible representation (ρn, Vn) of SU2(C) with the
irreducible character χn as in the theorem has dimension χn(1) = (n+ 1) by
l’ Hopital’s rule. If we denote by ρ the standard representation of SU2(C)
on V = C

2 then it is easy to check that the representation ρn = Snρ on the
space Vn = SnV of binary forms of degree n has character equal to

χn(cos θ + i sin θ) = einθ + ei(n−2)θ + · · ·+ e−i(n−2)θ + e−inθ

and coincides with the character found in the above theorem. The conclusion
is that the degree n binary forms representation of SU2(C) is irreducible and
in fact these are all the irreducible representations of SU2(C) up to equiva-
lence.

Remark 5.6. Mathematicians parametrize the irreducible representations
of SU2(C) by the degree n ∈ N of the binary forms. However, physicists
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sometimes use the spin l = 1
2
n ∈ 1

2
N instead. Since ρn(−1) = (−1)n the

irreducible representation ρn descends to the rotation group SO3(R) in case
the degree n is even or equivalently the spin l = 1

2
n is integral. The irreducible

representations with half integral spin are no longer honest representations
of the rotation group SO3(R) but only of the double spin cover SU2(C).

The group SU2(C) is the simplest (nontrivial) example of a connected
simply connected compact Lie group. The method of this section has been
generalized by Hermann Weyl (1885-1955) in 1925 to any connected simply
connected compact Lie group. Examples of such Lie groups are the special
unitary group SUn(C) for n ≥ 2 and the spin group Spinn(R) for n ≥ 3. The
special orthogonal group SOn(R) for n ≥ 3 is a connected compact Lie group
with fundamental group of order 2. Its universal (double) cover is a connected
simply connected compact Lie group, which is denoted Spinn(R) and called
the spin cover of SOn(R). In this section we have shown Spin3(R) = SU2(C)
and from Exercise 5.3 it follows that Spin4(R) = SU2(C)× SU2(C).

Now let G be a connected simply connected compact Lie group. One
chooses a maximal torus T ∼= Rn/2πL in G with L a lattice in Rn. It can be
shown that any two maximal tori in G are conjugated, which in turn implies
that the dimension n of T is an invariant of G, called the rank of G. The rank
of SU2(C) is one and in fact SU2(C) is the only connected simply connected
compact Lie group of rank one.

Any element of G is contained in some maximal torus of G, and hence the
character χ of an irreducible representation of G is completely determined
by its restriction χ|T to the torus T . By representation theory of T and
structure theory of G it follows that χ|T is an integral Fourier polynomial
on T , which is invariant under the Weyl group W = N/T with N = {x ∈
G; xtx−1 ∈ T ∀t ∈ T} the normalizer of T in G. The Weyl group W acts
on T by conjugation as a finite group generated by reflections. Weyl group
invariant Fourier polynomials on T are just even Fourier polynomials on the
the circle group R/2πZ in the SU2(C) case.

The irreducibility criterion 〈χ, χ〉 = 1 can be used along the same lines
as above for SU2(C) to write χ|T as the quotient of two alternating inte-
gral Fourier polynomials on T . This is the famous Weyl character formula,
and is considered one of the highlights of Weyl’s work. Weyl’s approach
is transcendental using integration theory. A purely algebraic approach to
Weyl’s character formula was found by the German-Dutch mathematician
Hans Freudenthal (1905-1990) in 1954.
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The original approach of Weyl is explained for example in the text book
J.J. Duistermaat and J.A.C. Kolk, Lie groups, Springer, 1999. The text book
H. Freudenthal and H. de Vries, Linear Lie Groups, Academic Press, 1969
was the first modern exposition of the subject, and explains both approaches.
It has interesting historical comments. Unfortunately, the notation is quite
unusual, probably due to certain ideas of Freudenthal on the didactics of
mathematics. This is maybe the main reason that the book did not have
the influence, which it deserved. Henk de Vries was my former colleague
here in Nijmegen. Hans Duistermaat, one of my two PhD advisors, was PhD
student and successor of Hans Freudenthal in Utrecht. The mathematical
institute in Utrecht is located in the Freudenthal building, named in 2013
after Freudenthal, to commemorate his contributions for Dutch mathematics.

Exercise 5.1. Show Euler’s result that each element r ∈ SO3(R) is a rotation
around some axis over some angle, and so of the form

ru = u cos θ + v sin θ, rv = −u sin θ + v cos θ, rw = w

for some orthonormal basis {u, v, w} of R3 with u× v = w.

Exercise 5.2. Explain in the setting of the previous section why the rotation
subspace R of R3n was defined by R = {(v × q1, · · · , v × qn); v ∈ R3}.

Exercise 5.3. The group SO4(R) is the connected group of isometries of the
round sphere S3 ∼= SU2(C) in R

4 ∼= H. Show that there exists a spin double
cover homomorphism

SU2(C)× SU2(C) ։ SO4(R)

with kernel {±(−1,−1)} of order 2. Conclude that the equivalence classes of
irreducible representations of SO4(R) are parametrized by pairs (m,n) ∈ N2

of nonnegative integers with m+ n even.

Exercise 5.4. Show using character theory the Clebsch-Gordan rule

ρn ⊗ ρm ∼ ρn+m ⊕ ρn+m−2 ⊕ · · · ⊕ ρ|n−m|+2 ⊕ ρ|n−m|

for the decomposition of the tensor product of two irreducible representations
of SU2(C) as direct sum of irreducible representations.
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6 Lie groups and Lie algebras

Let M be a smooth manifold. The linear space C∞(M) of smooth real
valued functions on M is a commutative algebra with respect to pointwise
multiplication of functions. Let us denote by TxM the tangent space ofM at
the point x ∈ M . A smooth vector field X onM assigns to each point x ∈M
a tangent vector Xx ∈ TxM such that Xx varies smoothly with x ∈ M . The
vector space of smooth vector fields on M is denoted X(M), and is in fact a
left module over C∞(M).

Given a smooth vector field X onM there exists for each x ∈M a unique
smooth solution curve

γ = γx : Ix →M, γ̇(t) =
dγ

dt
(t) = Xγ(t), γ(0) = x

defined on a maximal open interval Ix around 0 in R. In local coordinates
this is just the existence and uniqueness theorem for a first order system of
ordinary differential equations. If s ∈ Ix and t ∈ Iγx(s) then it is clear that

γx(t + s) = γγx(s)(t)

and so (t + s) ∈ Ix. Let us also write φt(x) = γx(t). The map φt : Dt → M
is smooth with domain

Dt = {x ∈M ; t ∈ Ix}

and is called the flow of X after time t. The flow satisfies the group property

φt+s(x) = φt(φs(x))

for x ∈ Ds and φs(x) ∈ Dt. The flows {φt}t∈R are called a local one parameter
group of diffeomorphisms. Only in case X ∈ X(M) is complete, which means
that Dt = M for all t ∈ R, one gets a true one parameter subgroup of the
diffeomorphism group Diff(M) of M .

If X ∈ X(M) and f ∈ C∞(M) then the directional derivative or Lie
derivative of f in the direction of X

LX(f)(x) =
d

dt

{

φ∗
tf(x) = f(φt(x))

}

t=0

is again a smooth function on M . The derivative is a derivation in the sense
that

LX(fg) = LX(f)g + fLX(g)
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for all X ∈ X(M) and f, g ∈ C∞(M). Moreover it is local in the sense that
the value of LX(f) at some point x ∈ M only depends on the restrictions
XU and fU of X and f to an open neighborhood U of x in M . Let us denote
by Der(C∞(M)) the vector space of local derivations of C∞(M). The linear
map

X(M) → Der(C∞(M)), X 7→ LX

is in fact a linear isomorphism.
The Lie derivative LX extends C∞(M) = Ω0(M) to the space Ωp(M) of

differential forms of degree p by the same formula

LX(α)(x) =
d

dt

{

φ∗
tα)

}

t=0

as in the α = f ∈ C∞(M). We have

LX(α ∧ β) = LX(α) ∧ β + α ∧ LX(β)

for α ∈ Ωp(M) and β ∈ Ωq(M), and so LX is a derivation of the algebra
(Ω(M),∧). The Lie derivative LX is also defined on X(M) by the formula

LX(Y ) =
d

dt

{

φ∗
tY

}

t=0

for Y ∈ X(M) and φt the flow of X at time t. We also write LX(Y ) = [X, Y ]
and call it the Lie bracket of X, Y ∈ X(M). From this definition it is clear
that

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0

for all X, Y, Z ∈ X(M). This relation is called the Jacobi identity, and can be
written in the equivalent form [LX ,LY ] = L[X,Y ] with the first bracket [·, ·]
the commutator bracket in End(C∞(M)) of End(Ωp(M)) or End(X(M)).

All three notions of X ∈ X(M), namely either as a family of tangent
vectors Xx ∈ TxM smoothly varying with x ∈ M , or as a local one param-
eter group {φt}t∈R of diffeomorphisms, or as a derivation LX of C∞(M) are
equivalent ways of thinking about smooth vector fields on M .

Definition 6.1. A Lie group G is both a smooth manifold and a group,
and the two structures are compatible in the sense that multiplication and
inversion

G×G→ G, (x, y) 7→ xy G→ G, x 7→ x−1

are smooth maps.
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Basic examples are the circle group R/2πZ ∼= SO2(R) = U1C and its
noncommutative analogue SU2(C) = U1(H) as double spin covering of the
rotation group SO3(R), which is just the group of linear transformations of
Cartesian space R3 preserving both scalar and vector product.

Let G be a Lie group. Let us denote by Lx : G → G,Lx(y) = xy the
smooth map of left multiplication by x ∈ G. In fact Lx is a diffeomorphism
of G with inverse Lx−1 . A vector field X ∈ X(G) is called left invariant if
Ty(Lx)Xy = Xxy for all x, y ∈ G. Taking y = e it follows that left invariant
vector fields on G are completely determined by their value at the identity
element. The linear subspace of X(G) of left invariant vector fields on G is
called the Lie algebra of G, and is denoted by g. Since g ∼= TeG the dimension
of g as vector space is the dimension of G as manifold.

The flow φt : G → G of X ∈ g is easily seen to be complete, and so we
get a one parameter subgroup R → G, t 7→ exp(tX) = φt(e) of G. The Lie
algebra g of G consists of the infinitesimal generators of all one parameter
subgroups of G. For X ∈ g the Lie derivative LX ∈ End(C∞(M)) is given
by

LX(f)(x) =
d

dt

{

f(x exp(tX))
}

t=0

and so λ(x)LX = LXλ(x) with λ the left regular representation of G on
C∞(G), given by (λ(x)f)(y) = f(x−1y) as before. Conversely, any local
derivation of C∞(G) which commutes with the left regular representation is
of the form LX for some X ∈ g. The conclusion is that for X, Y ∈ g the Lie
bracket [X, Y ] is again left invariant, so [X, Y ] ∈ g.

Definition 6.2. A Lie algebra g over a field F is a finite dimensional vector
space over F together with a bilinear operation

g× g → g, (X, Y ) 7→ [X, Y ]

which is antisymmetric and satisfies the Jacobi identity, so

[Y,X ] = −[X, Y ], [[X, Y ], Z] + [[Y, Z], X ] + [[Z,X ], Y ] = 0

for all X, Y, Z ∈ g.

So the vector space g of left invariant vector fields on a Lie group G is a
real Lie algebra, called the Lie algebra of G.

Most Lie groups occur as subgroup of the general linear group GLn(R)
for some n ∈ N with Lie algebra gln(R). For that reason Hermann Weyl
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nicknamed the general linear group also Her All Embracing Majesty. Its Lie
algebra gln(R) is called the general linear algebra. As a set gln(R) is just the
matrix algebra Matn(R) but the latter is an associative algebra with respect
to matrix multiplication while the former is a Lie algebra with Lie bracket
the commutator bracket [X, Y ] = XY − Y X for X, Y ∈ Matn(R).

It is a theorem of Élie Cartan that any closed subgroup G of GLn(R) is in
fact a Lie subgroup with Lie algebra g = {X ∈ gln(R); exp(tX) ∈ G ∀ t ∈ R}.
The symmetry group of volume preserving linear transformations of Rn is a
Lie group with Lie algebra

SLn(R) = {x ∈ GLn(R); detx = 1}, sln(R) = {X ∈ gln(R); trx = 0}

called the special linear group and special linear algebra respectively. The
symmetry group of Euclidean space Rn with standard scalar product (·, ·) is
a Lie group with Lie algebra

On(R) = {x ∈ GLn(R); x
tx = 1}, on(R) = {X ∈ gln(R);X

t +X = 0}

called the orthogonal group and orthogonal algebra respectively. The special
orthogonal group SOn(R) = SLn(R) ∩ On(R) is an index two subgroup of
On(R) with the same Lie algebra on(R). The symmetry group of Hermitian
space Cn with standard scalar product 〈·, ·〉 is a Lie group with Lie algebra

Un(C) = {x ∈ GLn(C); x
†x = 1}, un(C) = {X ∈ gln(C);X

† +X = 0}

called the unitary group and unitary algebra. The group SUn(C) = SLn(C)∩
Un(C) is called the special unitary group and has the special unitary algebra
sun(C) = {X ∈ un(C); trX = 0} as its lie algebra. The symmetry group of
Hermitian quaternion space Hn with standard scalar product 〈·, ·〉 is a Lie
group with Lie algebra

Un(H) = {x ∈ GLn(H); x†x = 1}, un(C) = {X ∈ gln(H);X† +X = 0}

called the unitary symplectic group and unitary symplectic algebra. The
groups SOn+2(R), SUn+1(C),Un(H) for n ≥ 1 are called the classical com-
pact Lie groups. They are all connected and the latter two are simply
connected, while SOn(R) for n ≥ 3 has a simply connected double cover
group Spinn(R). It can be shown that the group Spinn(R) is equal to
SU2(C), SU2(C)× SU2(C),U2(H), SU4(C) for n = 3, 4, 5, 6 respectively.
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If π : G → H is a homomorphism of Lie groups then we get a a derived
homomorphism π : g → h of the associated Lie algebras. By abuse of
notation we have used the same letter π for the Lie group and Lie algebra
homomorphism. Clearly π : g → h is a linear map as the tangent map of
π : G → H at the identity element, using the identification g = TeG. The
image under π : G → H of the one parameter subgroup exp(tX) of G with
infinitesimal generator X ∈ g is the one parameter subgroup

π(exp(tX)) = exp(tπ(X))

of H with infinitesimal generator π(X) ∈ h for all t ∈ R. In particular we
have the commutative diagram

g
π−−−→ h

exp





y





y

exp

G
π−−−→ H

by taking t = 1.
In order that π : g → h is a Lie algebra homomorphism it remains to

understand that π([X, Y ]) = [π(X), π(Y )] for all X, Y ∈ g. In the case of
linear Lie groups G < GLn(R) with linear Lie algebra g < gln(R) and like
wise for H < GLm(R) and h < glm(R) this follows from the formula

exp(tX) exp(tY ) exp(−tX) exp(−tY ) = exp(t2[X, Y ] +O(t3))

for t→ 0 and X, Y ∈ g < gln(R). Taking s = t2 and neglecting higher order
terms shows

d

ds
{π(exp(s[X, Y ]))}|s=0 =

d

ds
{exp(s[π(X), π(Y )]))}|s=0

which in turn implies π([X, Y ]) = [π(X), π(Y )] for X, Y ∈ g.
We have seen that a Lie group homomorphism can be derived to a Lie

algebra homomorphism such that the diagram

g
π−−−→ h

exp





y





y

exp

G
π−−−→ H
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is commutative. The exponential map is a local diffeomorphism from (g, 0)
to (G, e) with inverse log. Hence the Lie algebra homomorphism determines
the Lie group homomorphism uniquely, as long as G is a connected Lie group.
It can be shown that for G connected and simply connected any Lie algebra
homomorphism integrates to a unique Lie group homomorphism.

A representation of a Lie group G is just a Lie group homomorphism
G → GL(V ) for some (finite dimensional) complex vector space V . Such
a representation can be derived to a Lie algebra representation g → gl(V )
which uniquely determines the original Lie group representation, as long
as G is connected. Therefore the both algebraic and analytic problem of
finding the representations of a connected Lie group G boils down to two
problems. In the first place determine the Lie algebra representations of g,
which is an algebraic problem. Subsequently decide which of the Lie algebra
representations of g integrate to Lie group representations of G. The latter
problem is essentially topological, as it is closely related to the determination
of the fundamental group of G. The reduction of the transcendental problem
of finding the representations of a Lie group G to a purely algebraic problem
of finding the representations of its Lie algebra g is the deep and fruitful
insight of Sophus Lie.

Exercise 6.1. Show that for X, Y ∈ gln(R) we have

exp(tX) exp(tY ) exp(−tX) exp(−tY ) = exp(t2[X, Y ] +O(t3))

for t → 0, by using the convergent power series exp(tX) =
∑∞

0 tkXk/k!.
Conclude that for a homomorphism π : G → H of linear Lie groups the
derived homomorphism π : g → h of their Lie algebras satisfies π([X, Y ]) =
[π(X), π(Y )] for X, Y ∈ g.

Exercise 6.2. Suppose G is a connected Lie group. Show that for an open
neighborhood U of e in G we have G = ∪nU

n. Conclude that a Lie group
homomorphism π : G→ H is uniquely determined by its derived Lie algebra
π : g → h.

Exercise 6.3. Show that a surjective Lie group homomorphism π : G → H
with discrete kernel induces a derived Lie algebra isomorphism π : g → h.
Conclude that the spin homomorphism π : SU2(C) → SO3(R) induces a
derived Lie algebra isomorphism π : su2(C) → so3(R), but the inverse Lie
algebra homomorphism π−1 : so3(R) → su2(C) does not integrate to a Lie
group homomorphism SO3(R) → SU2(C).
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7 Lie algebra representations

Suppose G0 is a connected Lie group with real Lie algebra g0. In the previous
section we have seen that each Lie group representation ρ : G0 → GL(V )
on a complex vector space V can be derived to a Lie algebra representation
ρ : g0 → gl(V ) on V . Here gl(V ) = End(V ) as a set, but End(V ) is a complex
associative algebra with respect to composition of linear maps while gl(V )
is a complex Lie algebra with respect to the commutator bracket. A fortiori
gl(V ) is a real Lie algebra by restriction of scalars from C to R.

Any such homomorphism ρ : g0 → gl(V ) of real Lie algebras extends to
a homomorphism

ρ : g → gl(V )

of complex Lie algebras with g = g0 ⊕ ig0 the complexification of g0. Con-
versely, any complex representation of the complexification g on V restricts
to a real representation of g0 on V .

The idea is that the connected Lie groupG0 might have a complexification
G which should be a connected complex Lie group in the sense that group
multiplication and inversion are holomorphic maps. Moreover the smooth
representation ρ : G0 → GL(V ) might also extend to a holomorphic repre-
sentation ρ : G → GL(V ) of the complexification G. Examples show that
at the group level this is NOT always possible. However, if such a proce-
dure is possible then the holomorphic representation of G on V is completely
determined by the smooth representation of G0 on V .

Hermann Weyl showed that this procedure is always possible for a com-
pact connected Lie group G0, and in this way he proved that a holomorphic
representation of its complexification G on a finite dimensional vector space
V is always completely reducible. This method is called Weyl’s unitary trick.
Examples for which the unitary trick works are

G0 g0 g G
U1(C) ∼= R/2πZ u1(C) ∼= R gl1(C)

∼= C GL1(C) ∼= C×

SUn(C) sun(C) sln(C) SLn(C)
SOn(R) son(R) son(C) SOn(C)
Spinn(R) son(R) son(C) Spinn(C)
Un(H) un(H) sp2n(C) Sp2n(C)

with the easiest and most illuminating case in the second row.
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Suppose now that g is a complex Lie algebra, and (π, U) and (ρ, V ) are
finite dimensional representations of g. By constructions of linear algebra we
can define new finite dimensional representations (ρ∗, V ∗) on the dual space,
(π ⊗ ρ, U ⊗ V ) on the tensor product space and (Hom(π, ρ),Hom(U, V )) on
the Hom space. Indeed for the dual reprsentation put

ρ∗(X) = −ρ(X)∗

and for the tensor product representation put

(π ⊗ ρ)(X) = π(X)⊗ 1V + 1U ⊗ ρ(X)

with 1U , 1V the identity operator on U, V respectively, and so for the Hom
representation one has to take

Hom(π, ρ)(X)A = −Aπ(X) + ρ(X)A

for all X ∈ g and A ∈ Hom(U, V ).
It is an easy exercise in algebra to check that these formulas define new Lie

algebra representations. For example, for the tensor product representation
this boils down to the verification

[(π ⊗ ρ)(X), (π ⊗ ρ)(Y )] =

(π(X)⊗ 1V + 1U ⊗ ρ(X))(π(Y )⊗ 1V + 1U ⊗ ρ(Y ))−
(π(Y )⊗ 1V + 1U ⊗ ρ(Y ))(π(X)⊗ 1V + 1U ⊗ ρ(X)) =

(π(X)⊗ 1V )(π(Y )⊗ 1V ) + (π(X)⊗ 1V )(1U ⊗ ρ(Y ))+

(1U ⊗ ρ(X))(π(Y )⊗ 1V ) + (1U ⊗ ρ(X))(1U ⊗ ρ(Y ))

−X ↔ Y =

(π(X)π(Y )⊗ 1V ) + (π(X)⊗ ρ(Y )) + (π(Y )⊗ ρ(X)) + (1U ⊗ ρ(X)ρ(Y ))

−X ↔ Y =

(π(X)π(Y )− π(Y )π(X))⊗ 1V ) + (1U ⊗ (ρ(X)ρ(Y )− ρ(Y )ρ(X)) =

π([X, Y ])⊗ 1V + 1U ⊗ ρ([X, Y ]) = (π ⊗ ρ)([X, Y ])

for all X, Y ∈ g. Likewise for the dual and the Hom representation.
If G0 is a Lie group with Lie algebra g0, and (π, U) and (ρ, V ) are finite

dimensional representations of G0 then the defining formula for the tensor
product representation also follows from

(π ⊗ ρ)(X) =
d

dt
{π(exp(tX))⊗ ρ(exp(tX))}

∣

∣

t=0
= π(X)⊗ 1V + 1U ⊗ ρ(X)
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for all X ∈ g0 by using the Leibniz product rule for differentiation. Likewise
for the dual and the Hom representation.

Proposition 7.1. Let V be a representation of a Lie algebra g. Suppose
H ∈ g is a diagonalisable operator in V so that

V =
⊕

λ

Ker(H − λ)

algebraically (any v ∈ V is a finite sum v =
∑

λ vλ with Hvλ = λvλ). Then
any subrepresentation U of V respects this decomposition so that

U =
⊕

λ

(U ∩Ker(H − λ)) .

Proof. Write u ∈ U as u =
∑

λ uλ with Huλ = λuλ. Then Hnu =
∑

λ λ
nuλ

lie in U for all n ∈ N. Using the nonvanishing of a Vandermonde determinant
we can write each uλ as a linear combination of Hnu with n ∈ N.

Exercise 7.1. Show that the formulas for the dual and Hom representation
on the Lie algebra level indeed define Lie algebra representations.

Exercise 7.2. Assume that is given that the classical groups SUn(C) for
n ≥ 2, Spinn(R) for n ≥ 3 and Un(H) for n ≥ 1 are connected and simply
connected. Assume also that is given the theorem that for a connected and
simply connected Lie group G0 with Lie algebra g0 each finite dimensional
Lie algebra representation of g0 integrates to a a Lie group representation
of G0. Conclude that each finite dimensional Lie algebra representation of
sln(C) for n ≥ 2, or son(C) for n ≥ 3 or Sp2n(C) for n ≥ 1 is completely
reducible.
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8 The universal enveloping algebra

Let g be a Lie algebra of dimension n with a basis X1, · · · , Xn. The tensor
algebra Tg = ⊕Tdg is a graded associative algebra with corresponding basis
of Tdg given by the pure tensors of degree d ∈ N

{Xi1 ⊗Xi2 ⊗ · · · ⊗Xid ; 1 ≤ i1, i2, · · · , id ≤ n = dimV }.

The symmetric algebra Sg = ⊕Sdg = Tg/Ig = Pg∗ is also graded with degree
d part equal to Sdg = Tdg/Idg with

Idg = Ig ∩ Tdg =
⊕

k+l=d−2

⊕

i<j

{Tkg⊗ (Xi ⊗Xj −Xj ⊗Xi)⊗ Tlg}.

In turn this implies that Sdg has basis

{Xi1Xi2 · · ·Xid ; 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n}

or equivalently

{Xk1
1 X

k2
2 · · ·Xkn

n ; ki ∈ N ∀i,
∑

ki = d}

of monomials of degree d. So far in order to define the symmetric algebra Sg
we have only used the structure of g as a vector space.

Now also the structure of g as Lie algebra will come into play. If we
denote by Jg the (two sided, that is both from the left and the right) ideal
of Tg defined by

Jg =
⊕

i<j

{Tg⊗ (Xi ⊗Xj −Xj ⊗Xi − [Xi, Xj])⊗ Tg}

then the universal enveloping algebra of the Lie algebra g is defined by Ug =
Tg/Jg. It is an associative algebra, but no longer graded because the ideal
Jg is no longer homogeneous. What remains is a filtration Ug = ∪Udg with

Tdg =
⊕

k≤d

Tkg

the tensors of degree at most d, and the intersection

Jdg = Jg ∩Tdg =
∑

k+l=d−2

∑

i<j

{Tkg⊗ (Xi ⊗Xj −Xj ⊗Xi − [Xi, Xj])⊗Tlg}

39



of tensors of degree at most d with the ideal, and with quotient

Udg = Tdg/Jdg.

Clearly multiplication in Ug defines a linear map Udg⊗Ueg 7→ Ud+eg for all
d, e ≥ 0.

Definition 8.1. The excess e of a basis vector Xi1 ⊗ · · · ⊗ Xid of Tdg for
1 ≤ i1, · · · , in ≤ n is given by e =# {(p, q); p < q, ip > iq}.

We write eTdg = span{Xi1⊗· · ·⊗Xid ; excess = e} and eTg = ⊕d
eTdg. A

monomial Xi1⊗· · ·⊗Xid has excess equal to 0 if and only if i1 ≤ i2 ≤ · · · ≤ id
in which case we also speak of a standard monomial. The standard monomials
form a basis of 0T and descend to the basis {Xi1Xi2 · · ·Xid} of Sg = Tg/Ig.
In other words Tg = 0Tg⊕ Ig, that is Tg = 0Tg+ Ig and 0Tg ∩ Ig = 0.

A similar result holds for the universal enveloping algebra Ug = Tg/Jg,
and is called the PBW theorem, named after Henri Poincaré, Garrett Birkhoff
and Ernst Witt.

Theorem 8.2. We have Tg = 0Tg⊕ Jg.

Proof. We will first show that Tg = 0Tg + Jg.
Consider a monomial Xi1 ⊗ · · · ⊗ Xid ∈ eTdg of degree d and excess e.

We shall prove that Xi1 ⊗ · · · ⊗Xid ∈ 0Tg+Jg by a double induction on the
degree d and the excess e. If d = 0 then e = 0, and there is nothing to prove.
Likewise if d ≥ 0 and e = 0 then Xi1 ⊗ · · · ⊗ Xid ∈ 0Tg ⊂ 0Tg + Jg. Now
suppose that e ≥ 1 and say ip > ip+1. Then we write

Xi1 ⊗ · · · ⊗Xid = Xi1 ⊗ · · · ⊗Xip ⊗Xip+1
⊗ · · · ⊗Xid =

Xi1 ⊗ · · · ⊗Xip+1
⊗Xip ⊗ · · · ⊗Xid +Xi1 ⊗ · · · ⊗ [Xip , Xip+1

]⊗ · · · ⊗Xid

+Xi1 ⊗ · · · ⊗ (Xip ⊗Xip+1
−Xip+1

⊗Xip − [Xip , Xip+1
])⊗ · · · ⊗Xid

which lies in 0Tg + Jg by the induction hypothesis, because the first term
has degree d and excess (e− 1), the second term has degree (d− 1) and the
third term lies in Jg.

The second claim 0Tg ∩ Jg = 0 is proved by a similar induction, but the
details are slightly more complicated.
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Lemma 8.3. There exists a (unique) linear map L : Tg 7→ Tg such that L
is the identity on 0Tg and (in case ip > ip+1)

L(Xi1 ⊗ · · · ⊗Xip ⊗Xip+1
⊗ · · · ⊗Xid) =

L(Xi1 ⊗ · · · ⊗Xip+1
⊗Xip ⊗ · · · ⊗Xid)+

L(Xi1 ⊗ · · · ⊗ [Xip, Xip+1
]⊗ · · · ⊗Xid) .

We shall refer to this formula as the ordering formula. Note that the
ordering formula amounts to

L(Xi1 ⊗ · · · ⊗ (Xip ⊗Xip+1
−Xip+1

⊗Xip − [Xip, Xip+1
])⊗ · · · ⊗Xid) = 0

so that L = 0 on Jg. Hence 0Tg ∩ Jg ⊂ ker(L − 1) ∩ ker(L) = 0. Therefore
the second claim is a direct consequence of the existence of the linear map L
of the lemma.

Proof. We prove the lemma by a double induction on the degree d and the
excess e. The problem is to define L on the monomial basis Xi1 ⊗ · · · ⊗Xid

of eTdg. If e = 0 then L(Xi1 ⊗ · · · ⊗Xid) = Xi1 ⊗ · · · ⊗Xid by assumption.
If there is unique index 1 ≤ p < d such that ip > ip+1 then we put

L(Xi1 ⊗ · · · ⊗Xip ⊗Xip+1
⊗ · · · ⊗Xid) =

L(Xi1 ⊗ · · · ⊗Xip+1
⊗Xip ⊗ · · · ⊗Xid)+

L(Xi1 ⊗ · · · ⊗ [Xip , Xip+1
]⊗ · · · ⊗Xid)

and the result is well defined by the induction hypothesis.
If ip > ip+1 and iq > iq+1 for some p < q then we rewrite

I = L(Xi1 ⊗ · · · ⊗Xip ⊗Xip+1
⊗ · · · ⊗Xiq ⊗Xiq+1

⊗ · · · ⊗Xid)

using the the ordering formula of the lemma as a linear combination (involv-
ing the structure constants of g for the given basis) of the image under L
of monomials of lower excess or lower degree. However the rewriting can be
done using the ordering formula at place (p, p+ 1) or at place (q, q + 1). We
have to check that the outcome is the same, and so the linear map L is well
defined.

Let us first assume that p+1 < q. Let the final expression F be obtained
from I by using the ordering formula at place (p, p+1), and let F ′ be obtained
from I by using the ordering formula at place (q, q+1). Then we get F = F ′
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by using the above lemma for F at place (q, q+1) and for F ′ at place (p, p+1),
which is allowed by induction on the excess and the degree. Explicitly

F = L(Xi1 ⊗ · · · ⊗Xip+1
⊗Xip ⊗ · · · ⊗Xiq ⊗Xiq+1

⊗ · · · ⊗Xid)

+ L(Xi1 ⊗ · · · ⊗ [Xip , Xip+1
]⊗ · · · ⊗Xiq ⊗Xiq+1

⊗ · · · ⊗Xid)

which can be rewritten by the induction hypothesis as

F = L(Xi1 ⊗ · · · ⊗Xip+1
⊗Xip ⊗ · · · ⊗Xiq+1

⊗Xiq ⊗ · · · ⊗Xid)

+ L(Xi1 ⊗ · · · ⊗Xip+1
⊗Xip ⊗ · · · ⊗ [Xiq , Xiq+1

]⊗ · · · ⊗Xid)

+ L(Xi1 ⊗ · · · ⊗ [Xip , Xip+1
]⊗ · · · ⊗Xiq+1

⊗Xiq ⊗ · · · ⊗Xid)

+ L(Xi1 ⊗ · · · ⊗ [Xip, Xip+1
]⊗ · · · ⊗ [Xiq , Xiq+1

]⊗ · · · ⊗Xid) .

The outcome has a symmetric role in p and q, and hence F = F ′.
Next assume that p+ 1 = q. Our initial expression becomes

I = L(Xi1 ⊗ · · · ⊗Xip ⊗Xip+1
⊗Xip+2

⊗ · · · ⊗Xid)

or more simply (but without loss of generality)

I = L(Xi1 ⊗Xi2 ⊗Xi3)

with i1 > i2 > i3. So we have

F = L(Xi2 ⊗Xi1 ⊗Xi3) + L([Xi1 , Xi2]⊗Xi3) =

L(Xi2 ⊗Xi3 ⊗Xi1) + L(Xi2 ⊗ [Xi1 , Xi3]) + L([Xi1 , Xi2]⊗Xi3) =

L(Xi3 ⊗Xi2 ⊗Xi1) + L([Xi2 , Xi3]⊗Xi1)+

L(Xi2 ⊗ [Xi1 , Xi3 ]) + L([Xi1 , Xi2]⊗Xi3)

and similarly

F ′ = L(Xi1 ⊗Xi3 ⊗Xi2) + L(Xi1 ⊗ [Xi2 , Xi3 ]) =

L(Xi3 ⊗Xi1 ⊗Xi2) + L([Xi1 , Xi3 ]⊗Xi2) + L(Xi1 ⊗ [Xi2 , Xi3 ]) =

L(Xi3 ⊗Xi2 ⊗Xi1) + L(Xi3 ⊗ [Xi1, Xi2 ])+

L([Xi1 , Xi3 ]⊗Xi2) + L(Xi1 ⊗ [Xi2 , Xi3]) .

Hence we find

F − F ′ = L([Xi2 , Xi3]⊗Xi1 −Xi1 ⊗ [Xi2 , Xi3 ]) +

L(Xi2 ⊗ [Xi1 , Xi3]− [Xi1 , Xi3]⊗Xi2)+

L([Xi1 , Xi2 ]⊗Xi3 −Xi3 ⊗ [Xi1, Xi2 ]) =

L([[Xi2 , Xi3 ], Xi1] + [Xi2 , [Xi1 , Xi3]] + [[Xi1, Xi2 ], Xi3])

L([[Xi2 , Xi3 ], Xi1] + [[Xi3 , Xi1 ], Xi2] + [[Xi1 , Xi2 ], Xi3]) = L(0) = 0
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by the antisymmetry of the bracket and the Jacobi identity. This concludes
the proof that F = F ′ in the second case, and finishes the proof of the
lemma.

As mentioned before the ordering formula of the lemma has the theorem
as immediate consequence. This finishes the proof of the PBW theorem.

Corollary 8.4. Given a basis X1, · · · , Xn of g the universal enveloping al-
gebra Ug has the corresponding PBW basis

{Xi1Xi2 · · ·Xid ; 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n, d ∈ N} ,

or equivalently

{Xk1
1 X

k2
2 · · ·Xkn

n ; 0 ≤ k1, k2, · · · , kn <∞} .

Corollary 8.5. The natural map j : g → Ug is an injection. From now on
we write X 7→ X for the canonical injection g →֒ Ug.

This corollary justifies the terminology universal enveloping algebra for
Ug, since it is truly an enveloping associative algebra of g. Moreover Ug is
generated as an associative algebra by g. Finally it is universal with respect
to these two properties.

Exercise 8.1. Show that the natural linear bijection Tdg/Td−1g → Tdg in-
duces a linear bijection Udg/Ud−1g → Sdg that is compatible with the multi-
plications in Ug and Sg. Show that the Poisson bracket {·, ·}

Sdg⊗ Seg → Sd+e−1g

with {·, ·} = [·, ·] for d = e = 1 and {x, yz} = {x, y}z + y{x, z}, amounts to

Udg/Ud−1g⊗ Ueg/Ue−1g → Ud+e−1g/Ud+e−2g

sending the quotients of x ⊗ y to the quotient of xy − yx (multiplication in
Ug). The conclusion is that the Poisson bracket is the leading term of the
commutator bracket. This is analogous to the way classical mechanics can be
obtained from quantum mechanics as the classical limit.
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9 The representations of sl2(C)

The Lie algebra sl2(C) has so called Chevalley basis

E =

(

0 1
0 0

)

, H =

(

1 0
0 −1

)

, F =

(

0 0
1 0

)

with commutation relations

[H,E] = 2E , [H,F ] = −2F , [E, F ] = H .

The universal enveloping algebra Usl2(C) has the associated PBW basis
F iHjEk for i, j, k ∈ N.

Lemma 9.1. In Usl2(C) the following relations hold

[H,F k+1] = −2(k + 1)F k+1 , [E, F k+1] = (k + 1)F k(H − k)

for all k ∈ N.

Proof. In any associative algebra A we just write [a, b] = ab− ba (turning A
also into a Lie algebra) and we have the trivial formula [a, bc] = [a, b]c+b[a, c]
for all a, b, c ∈ A.

The proof of the first formula goes by induction on k ∈ N. The case k = 0
is clear, since [H,F ] = −2F . Now for k ≥ 1 we have

[H,F k+1] = [H,FF k] = [H,F ]F k + F [H,F k] =

−2FF k − 2kFF k = −2(k + 1)F k+1

which proves the first formula.
Likewise the proof of the second formula goes by induction on k ∈ N.

The case k = 0 is clear, since [E, F ] = H . Now for k ≥ 1 we have

[E, F k+1] = [E, F ]F k + F [E, F k] = HF k + kFF k−1(H − (k − 1))

by using the induction hypothesis. Using the first formula we get

[E, F k+1] = [H,F k] + F kH + kF k(H − (k − 1)) =

−2kF k + F kH + kF k(H − (k − 1))

and therefore

[E, F k+1] = (k + 1)F kH − F k(2k + k(k − 1)) = (k + 1)F k(H − k)

which proves the second formula.
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The universal enveloping algebra Usl2(C) has a natural (associative alge-
bra) representation on the infinite dimensional vector space Usl2(C) by left
multiplication. For λ ∈ C the linear subspace

J(λ) = Usl2(C)(H − λ) + (Usl2)(C)E

is a left ideal in Usl2(C), or equivalently an invariant linear subspace of
Usl2(C). Hence the quotient

M(λ) = Usl2(C)/J(λ)

also becomes an associative algebra representation space of Usl2(C), called
the Verma representation of Usl2(C) with parameter λ ∈ C. By restriction
from Usl2(C) to sl2(C) the Verma representation M(λ) can be equally well
considered as a Lie algebra representation of sl2(C).

Lemma 9.2. The Verma representation M(λ) of sl2(C) has basis

vk = F k + J(λ)

for k ∈ N, and the generators {E,H, F} act on this basis as

Hvk = (λ− 2k)vk , Evk = k(λ− (k − 1))vk−1 , F vk = vk+1

with v−1 = 0. The operator H in M(λ) is diagonal in the basis vk for k ∈ N.
The operators E and F in M(λ) are so called ladder operators.

Proof. The PBW basis vector F kH lEm can be reduced modulo J(λ) to a
multiple of F k. Hence vk, k ∈ N span M(λ), and vk 6= 0 ∀k ∈ N.

By definition v0 = 1 + J(λ), hence

Hv0 ≡ H = λ + (H − λ) ≡ λ ≡ λv0

with ≡ denoting equality modulo J(λ). Moreover

Hvk = HF kv0 = [H,F k]v0 + F kHv0 = −2kF kv0 + λF kv0 = (λ− 2k)vk

and therefore vk, k ∈ N is a basis of M(λ). Clearly

Ev0 ≡ E ≡ 0

so that

Evk = EF kv0 = [E, F k]v0 + F kEv0 = k(λ− (k − 1))vk−1 .

The last formula Fvk = vk+1 is trivial.
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Definition 9.3. The eigenvalues of the operator H in a representation space
of sl2 are called the weights of that representation. For example, the weights
of the Verma representation M(λ) are {λ − 2k; k ∈ N} and the parameter
λ ∈ C is therefore called the highest weight of M(λ). The vector v0 is called
the highest weight vector in M(λ).

Lemma 9.4. A linear subspace of M(λ) that is invariant under H is the
linear span of some of the vk. A nonzero linear subspace of M(λ) that is
invariant under H and F is the linear span of the vk for k ≥ k0, for some
k0 ∈ N.

Proof. The first statement follows from Proposition 7.1, and the second state-
ment is obvious from the first statement.

Corollary 9.5. A nontrivial (distinct from 0 and the full space) linear sub-
space of M(λ) that is invariant under sl2 exists if an only if Evn+1 = 0 for
some n ∈ N,and so λ = n ∈ N. In this case vn+1 is a highest weight vector of
weight −n−2 and we get an intertwining operator M(−n− 2) →֒M(n) with
irreducible quotient representation L(n) = M(n)/M(−n − 2) of dimension
(n+ 1) and with weights {n, n− 2, · · · ,−n}.

We shall denote by L(λ) the irreducible quotient ofM(λ). In other words
L(λ) =M(n)/M(−n − 2) if λ = n ∈ N while L(λ) =M(λ) if λ /∈ N.

Remark 9.6. Let V = C2 be a two dimensional vector space with basis
{X, Y }. The vector space Vn = SnV of binary forms of degree n has basis
{Xn, Xn−1Y, · · · , XY n−1, Y n}. The standard representation ρ of SL2(C) of
V gives rise to an irreducible representation Snρ on Vn as mentioned in
Remark 5.5. The corresponding Lie algebra representation of sl2(C) on Vn =
L(n) is given by the linear vector fields

E = X
∂

∂Y
, F = Y

∂

∂X
, H = X

∂

∂X
− Y

∂

∂Y

with highest weight vector v0 = Xn of weight n ∈ N.

Let g0 be a real Lie algebra with complexification g = g0 ⊕ ig0. If we
denote (X + iY )⋆ = −X + iY for X, Y ∈ g0 then the star is an antilinear
antiinvolution on g. The star extends to Ug as an antilinear antiinvolution. If
〈·, ·〉 is a Hermitian inner product on a vector space V then a representation
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of g0 on on (V, 〈·, ·〉) is called unitary if g0 acts via skew Hermitian linear
operators on V or equivalently in the representation space

X∗ = X† , x∗ = x†

for all X ∈ g or all x ∈ Ug with the dagger the adjoint operator on (V, 〈·, ·〉).
The Lie algebra sl2(C) has two real forms su(2) and su(1, 1) with corre-

sponding antilinear antiinvolutions

H⋆ = H , E⋆ = F , F ⋆ = E

H⋆ = H , E⋆ = −F , F ⋆ = −E
respectively. A Hermitian form 〈·, ·〉 on V assigns to each pair u, v ∈ V a
complex number 〈u, v〉 which is linear in u ∈ V and antilinear in v ∈ V . We
do not require the Hermitian form to be unitary (which means 〈v, v〉 positive
for all v 6= 0), and even the kernel of the Hermitian form (which consists of
all u ∈ V with 〈u, v〉 = 0 for all v ∈ V ) might be a nonzero linear subspace.
Now let V also be a representation space for sl2(C). The Hermitian form
〈·, ·〉 is called invariant for sl2(C) with respect to the given star structure if

〈Xu, v〉 = 〈u,X⋆v〉 ∀u, v ∈ V , ∀x ∈ sl2(C) .

In particular for V =M(λ) an invariant Hermitian form 〈·, ·〉 satisfies

(λ− 2k)〈vk, vl〉 = 〈Hvk, vl〉 = 〈vk, Hvl〉 = (λ− 2l)〈vk, vl〉

and hence ((λ−λ)−2(k− l))〈vk, vl〉 = 0. Since (λ−λ) ∈ iR and (k− l) ∈ Z

we get 〈vk, vl〉 = 0 if k 6= l. Furthermore we find

〈vk+1, vk+1〉 = 〈vk+1, F vk〉 = ±〈Evk+1, vk〉 = ±(k + 1)(λ− k)〈vk, vk〉

with ± = + for su(2) and ± = − for su(1, 1).

Theorem 9.7. The irreducible representation L(λ) of sl2(C) is unitary for
su(2) if and only if λ = n ∈ N, that is L(λ = n) has finite dimension (n+1).

Proof. We may assume that 〈v0, v0〉 is positive. If λ = n ∈ N then in M(n)
we see that

〈vk, vk〉 = (k!)2
(

n

k

)

〈v0, v0〉
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is positive for 0 ≤ k ≤ n, while 〈vk+1, vk+1〉 = 0 ∀k ≥ n. Hence the kernel
of the invariant Hermitian form on M(n) is exactly equal to the maximal
proper subrepresentation M(−n − 2), and the invariant Hermitian form on
M(n) descends to an invariant unitary structure on L(n). If λ /∈ N then
M(λ) = L(λ) is a unitary representation for su(2) if and only if (λ − k) >
0 ∀k ∈ N. These inequalities have no solution.

All unitary representations L(n) for n ∈ N of su(2) can be integrated to
unitary representations of the group SU(2). In fact these are all the unitary
irreducible representations of SU(2).

Theorem 9.8. The irreducible representation L(λ) of sl2 is unitary for
su(1, 1) if and only if λ ≤ 0.

Proof. Assume that 〈v0, v0〉 is positive. Like in the above proof we get

〈vk, vk〉 = (k!)2(−1)k
(

λ

k

)

〈v0, v0〉 .

Clearly 〈v1, v1〉 = (−λ)〈v0, v0〉 to be nonnegative is a necessary condition for
unitarity of L(λ), that is λ ≤ 0. If λ = 0 then L(0) is the one dimensional
trivial representation, which is always unitary. If λ < 0 then L(λ) = M(λ)
is indeed unitary since −(λ− k) > 0 ∀k ∈ N.

All unitary representations L(−n) for n ∈ N of su(1, 1) can be integrated
(after a Hilbert space completion) to unitary representations of the group
SU(1, 1). For λ = −n < −1 these representations are so called ”discrete
series” representations of SU(1, 1), because all the matrix coëfficients are
square integrable with respect to a biinvariant measure on SU(1, 1). These
(and their lowest weight companions in the first exercise below) are not all
the unitary irreducible representations of SU(1, 1). The family of unitary rep-
resentations of su(1, 1) described in the above theorem is ususally referred to
as the analytic continuation of the discrete series representations of SU(1, 1).

Exercise 9.1. The Verma representations M(λ) of sl2(C) are sometimes
called the highest weight Verma representations to distinguish them from the
lowest weight Verma representations M ′(λ) = Usl2/J

′(λ) defined by

J ′(λ) = Usl2(C)(H − λ) + Usl2(C)F .
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Sow that for n ∈ N the irreducible quotient L′(−n) has finite dimension
(n + 1), and is unitary for su(2). Show that L(n) and L′(−n) are equiva-
lent representations. Show that the irreducible quotient L′(λ) is unitary for
su(1, 1) in case λ ≥ 0.

Exercise 9.2. Write formally exp(X) =
∑

n≥0 Xn/n! for the exponential
series.

1. Show that exp(X) exp(Y ) = exp(X + Y ) if XY = Y X.

2. Deduce that exp(X) is invertible with inverse exp(−X).

3. Show that exp(E) is a well defined operator in the Verma representation
M(λ) of sl2(C).

4. Show that exp(F ) is a well defined operator in the finite dimensional
representation L(n), n ∈ N of sl2(C).

5. Show that in the adjoint representation

ad : sl2(C) → End(sl2(C)), ad(X)Y = [X, Y ]

the operator s = exp(E) exp(−F ) exp(E) satisfies

sH = −H , sE = −F , sF = −E .

6. Show that (exp(X))Y (exp(−X)) = exp(ad(X))y in any finite dimen-
sional representation space of a Lie algebra g.

7. Conclude that the operator s = exp(E) exp(−F ) exp(E) is well defined
for any finite dimensional representation sl2(C) → End(V ) and maps
vectors of weight k to vectors of weight −k.

Exercise 9.3. If U and V are unitary representations of g then check that
U ⊗ V and V ∗ are unitary representations of g as well.

Exercise 9.4. Show that the degree 2 invariant in S(sl2)
sl2 is given by the

expression H2 + 4EF .

Exercise 9.5. Show that the Casimir operator C = H2 + 2EF + 2fE is
central in Usl2. By Schur’s Lemma the Casimir operator C acts in L(n) as a
scalar operator. Rewriting C = H2+2H +4FE check that this scalar equals
n2 + 2n = (n+ 1)2 − 1.
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Exercise 9.6. Show that the Casimir operator C in a unitary representation
V of su2 is selfadjoint. The eigenspace decomposition V = ⊕V (n) with
V (n) = Ker(C − (n2 + 2n)) is called the direct sum decomposition of V in
isotypical components, shortly the isotypical decomposition. Apparently the
direct sum decomposition of V in irreducible components is not unique, but
the isotypical decomposition of V is unique by the above argument.

Exercise 9.7. Suppse we have given a representation of sl2 on a finite di-
mensional Hilbert space V that is unitary for su2. The eigenvalues of H on
V are called the weights of the representation on V . Suppose k ∈ Z occurs
as weight of the representaion on V with multiplicity mk ∈ N.

1. Show that m−k = mk for all k ∈ Z.

2. Show that m0 ≥ m2 ≥ m4 ≥ · · · and m1 ≥ m3 ≥ m5 ≥ · · · . The first
and second items together are rephrased by saying that the multiplicities
of the even weights and of the odd weights form so called palindromic
sequences.

3. Suppose all weights of V are even and m0 = 5, m2 = 3, m4 = 3, m8 =
2, m12 = 1, m14 = 0. Describe the decomposition of V into irreducible
components.

4. Suppose all weights of V are odd and m5 = 4, m7 = 1 and the dimension
of V is equal to 28. Describe the decomposition of V into irreducible
components. These data do not quite suffice for a unique solution, but
there are two possibilities.
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10 The quantization of the Kepler problem

In this section we will discuss the Kepler problem from the viewpoint of
both classical mechanics (planetary motion around the sun) and quantum
mechanics (the hydrogen atom). Our discussion of the classical mechanics
of the Kepler problem is taken from an article ”Teaching the Kepler laws
for freshmen” by Maris van Haandel and myself from 2009 and published in
Mathematical Intelligencer.

We shall use inner products u · v and outer products u× v of vectors u
and v in R3, the compatibility conditions

u · (v ×w) = (u× v) ·w

u× (v×w) = (u ·w)v− (u · v)w
and the Leibniz product rules

(u · v). = u̇ · v + u · v̇

(u× v)
.
= u̇× v + u× v̇

without further explanation.
For a central force field F(r) = f(r)r/r the angular momentum vector

L = r×p is conserved by Newton’s law of motion F = ṗ, thereby leading to
Kepler’s second law. For a spherically symmetric central force field F(r) =
f(r)r/r the energy

H = p2/2m+ V (r) , V (r) = −
∫

f(r) dr

is conserved as well. These are the general initial remarks.
From now on consider the Kepler problem f(r) = −k/r2 en V (r) = −k/r

with k > 0 a coupling constant. More precisely, we consider the reduced
Kepler problem for the sun S and a planet P with r = rP − rS the relative
position of the planet. Let mS and mP be the masses of the sun S and
the planet P respectively. According to Newton the reduced mass becomes
m = mSmP/(mS +mP ) while the coupling constant is given by k = GmSmP

with G the universal gravitational constant. By conservation of energy the
motion for fixed energy H < 0 is bounded inside a sphere with center 0 and
radius −k/H .
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Consider the following picture of the plane perpendicular to L. The circle
C with center 0 and radius −k/H is the boundary of a disc where motion
with energy H < 0 takes place. Let s = −kr/rH be the projection of r from
the center 0 on this circle C. The line L through r with direction vector p

is the tangent line of the orbit E at position r with velocity v. Let t be the
orthogonal reflection of the point s in the line L. As time varies, the position
vector r moves along the orbit E , and likewise s moves along the circle C. It
is a good question to investigate how the point t moves.

bb

b

b

b

b

0

n

t

p

r

s C

E

L

N

Theorem 10.1. The point t equals K/mH and therefore is conserved.

Proof. The line N spanned by n = p × L is perpendicular to L. The point
t is obtained from s by subtracting twice the orthogonal projection of s− r

on the line N , and therefore

t = s− 2((s− r) · n)n/n2.

Now
s = −kr/rH

(s− r) · n = −(H + k/r)r · (p× L)/H = −(H + k/r)L2/H
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n2 = p2L2 = 2m(H + k/r)L2

and therefore
t = −kr/rH + n/mH = K/mH

with K = p × L − kmr/r the Lenz vector. The final step K̇ = 0 is derived
by a straightforward computation using the compatibility relations and the
Leibniz product rules for inner and outer products of vectors in R3.

Corollary 10.2. The orbit E is an ellipse with foci 0 and t, and major axis
equal to 2a = −k/H.

Proof. Indeed we have

|t− r|+ |r− 0| = |s− r|+ |r− 0| = |s− 0| = −k/H.

Hence E is an ellipse with foci 0 and t, and major axis 2a = −k/H .

The conserved vector t = K/mH is a priori well motivated in Euclidean
geometric terms. In most text books on classical mechanics (e.g. H. Gold-
stein, Classical Mechanics) the Lenz vector K is written down, and the mo-
tivation comes only a posteriori from K̇ = 0 as a vector in the direction of
the long axis of the elliptical orbit. The Lenz vector goes already back to
Lagrange in his article ”Théorie des variations séculaires des élements des
planètes” from 1781.

It is easy to check the relationsK·L = 0 andK2 = 2mHL2+k2m2. Hence
besides the familiar conserved quantities angular momentum L and energy
H only the direction of the Lenz vector K is a new independent conserved
quantity. Altogether there are 3+1+1 = 5 independent conserved quantities,
whose level curves in the phase space R6 are the Kepler ellipses, at least for
H < 0 corresponding to bounded motion.

If f, g are smooth functions of the six independent coordinates q =
(q1, q2, q3) and p = (p1, p2, p3) and if we define the Poisson bracket {f, g}
by

{f, g} =
∑

i

(

∂f

∂pi

∂g

∂ri
− ∂f

∂ri

∂g

∂pi

)

then it is easy to check that

{f, g} = −{g, f} , {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0
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for all three functions f, g, h. Hence the linear space F of smooth functions of
r and p have the structure of a Lie algebra. In addition the Poisson bracket
relates to the (commutative!) pointwise multiplication of functions by

{f, gh} = {f, g}h+ g{f, h}

for all three functions f, g, h ∈ F .
Newton’s equation of motion for a conservative force field F(r) = −∇V (r)

can be written in Hamiltonian form

ḟ = {H, f}

with H = p2/(2m) + V (r) the Hamiltonian. Indeed, for f = ri or f = pi
Hamilton’s equation amounts to

mṙ = p , ṗ = F(r)

which is just Newton’s equation.
We now turn to the quantum mechanics of the Kepler problem. The first

discussion of this question was given by Pauli in an article ”On the hydrogen
spectrum from the standpoint of the new quantum mechanics” from Jan-
uary 1926. Pauli’s solution is a beautiful piece of Lie algebra theory, which
made it difficult to digest for the average physicist of that time, who happily
adopted the shortly after found solution by Schrödinger. The latter method
rewrites the Schrödinger eigenvalue equation in spherical coördinates, and
subsequently consults a book on Special Functions (for Laguerre and Legen-
dre polynomials). This method of Schrödinger is just a lot of calculations.
In the proof by Pauli one has to do also a fair amount of calculations. But
the proof by Pauli is by far the better, because it explains the natural de-
generation of the hydrogen spectrum, while in the proof by Schrödinger this
spectrum has still accidental degeneration. The hidden conserved Lenz vector
is what is missing in the treatment by Schrödinger.

We consider Pauli’s proof below and the proof above of Kepler’s law of
ellipses as proofs from ”The Book”. This is an expression of the remarkable
mathematician Paul Erdös, who supposed that God has a book in which he
keeps only the most beautiful proofs of mathematical theorems. One of the
joyful parts of mathematics is to strive for proofs from ”The Book”.

We shall only outline the method of Pauli, and leave the proofs of the for-
mulas to the interested reader. In quantum mechanics the three components
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of the position r = (r1, r2, r3) and the momentum p = (p1, p2, p3) are selfad-
joint operators on a Hilbert space H, satisfying the Heisenberg commutation
relations

[ri, rj ] = [pi, pj] = 0 , [pi, rj] = −i~δij .
We wish to quantize the energy H , the angular momentum L and the Lenz
vector K. For H and L we can just take the classical formulas

H = p2/2m− k/r , L = r× p

but for the Lenz vector K = p× L− kmr/r there is an ambiguity with the
definition of p×L. Indeed, for the first component should we take p2L3−p3L2

or L3p2 − L2p3? For the solution of this ambiguity Pauli chose the average

K = (p× L− L× p)/2− kmr/r ,

which is easily seen to be selfadjoint. The following formulas

[Li, rj] = i~ǫijkrk , [Li, pj] = i~ǫijkpk

[Li, Lj ] = i~ǫijkLk , [Li, Kj] = i~ǫijkKk

mean that r,p,L andK are so called vector operators. Here ǫijk is the totally
antisymmetic ǫ-tensor, that is ǫijk = 1 if ijk = 123, 231, 312, ǫijk = −1
if ijk = 213, 132, 321 and zero otherwise. The conservation of L and K

amounts to the relations

[H,L] = [H,K] = 0 .

The first relation is immediate because H has spherical symmetry, but the
second relation requires some calculation. The following formulas are in
perfect analogy with classical mechanics

L ·K = K · L = 0 ,

but the formula
K2 = 2mH(L2 + ~

2) + k2m2

has a ”quantum correction” compared with the classical formula, vanishing
in the limit for ~ → 0. Our last formula

[Ki, Kj] = i~ǫijk(−2mH)Lk
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is obtained after a careful calculation.
The sometimes cumbersome calculations behind the above formulas shall

now be rewarded by an elegant and conceptually clear method for finding the
hydrogen spectrum. We wish to compute the dimension of the eigenspace

{ψ ∈ H;Hψ = Eψ}

with a fixed eigenvalue E < 0. If we denote

I = (L + (−2mE)−1/2K)/2 , J = (L− (−2mE)−1/2K)/2

then it is easy to see that I and J satisfy the commutation relations

[Ii, Ij ] = i~ǫijkIk , [Ji, Jj ] = i~ǫijkJk , [Ii, Jj] = 0 .

In other words the six dimensional vector space spanned by the components of
L and K is a Lie algebra isomorphic to sl2⊕sl2 commuting with H . The first
sl2 has basis Ii and the second sl2 has basis Jj . From L⋆ = L,K⋆ = K and
E < 0 we deduce that I⋆ = I,J⋆ = J. In other words the real six dimensional
vector space spanned by the components of L andK (or equivalently spanned
by the components of I and J) becomes identified with isu2 ⊕ isu2.

Assuming that the spectrum has natural degeneration with respect to
angular momentum and Lenz vector we can conclude

{ψ ∈ H;Hψ = Eψ} = L(m)⊗ L(n)

for some m,n ∈ N. Here Ii and Jj work in the first and the second factor of
L(m)⊗ L(n) respectively. Because

2(I2 − J2) = (I+ J) · (I− J) + (I− J) · (I+ J) =

(−2mE)−1/2(L ·K+K · L) = 0 ,

and by Exercise 9.5 and Exercise 10.2 below

I2|L(m)⊗L(n) = m(m+ 2)~2/4 , J2|L(m)⊗L(n) = n(n+ 2)~2/4

we conclude that m = n and

{ψ ∈ H;Hψ = Eψ} = L(n)⊗ L(n)
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for some n ∈ N. Finally we shall derive a formula for En as function of n.
Rewriting the above formula K2 = 2mH(L2 + ~2) + k2m2 in the form

L2 + (−2mE)−1K2 + ~
2 = −k2m/2E

and because on the space L(n)⊗ L(n)

L2 + (−2mE)−1K2 + ~
2 = 2(I2 + J2) + ~

2 = n(n + 2)~2 + ~
2 = (n+ 1)2~2

we arrive at
E = En = −k2m/2(n+ 1)2~2

with n running over the set N. The energy level En has multiplicity (n+1)2.
As a representation for I and J it is irreducible of the form L(n)⊗L(n), but
restricting to the diagonal subalgebra L we have the Clebsch-Gordan rule

L(n)⊗ L(n) = L(0)⊕ L(2)⊕ · · · ⊕ L(2n) .

If we forget the symmetry of the Lenz vector K and take into account only
the spherical symmetry of the angular momentum vector L = I + J the nth

energy level has accidental degeneration of multiplicity (n+ 1).

Exercise 10.1. Show that for A,B selfadjoint operators on a Hilbert space
H the operator (AB+BA)/2 is again selfadjoint.

Exercise 10.2. The Pauli spin matrices are defined by

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

,

so H = σ3, E = (σ1 + iσ2)/2, F = (σ1 − iσ2)/2 gives the relation between
the Chevalley basis and the Pauli matrices. In a unitary representation of
su2 the Pauli matrices act as selfadjoint operators. Check the commutation
relations

[σi, σj] = 2iǫijkσk

and show that the Casimir operator C = H2 + 2EF + 2FE is equal to σ2
1 +

σ2
2 + σ2

3. The conclusion is that L2 = ~2C/4, so apart from a factor ~2/4 the
Casimir operator C is just the square length of the the angular momentum
vector.
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Exercise 10.3. Show that the Cartesian space R3 with Lie bracket [·, ·] equal
to the vector product × is a Lie algebra. Show that this Lie algebra g0 is
isomorphic to so3. Show that g0 has a basis Ei with [Ei, Ej] = ǫijkEk.

Exercise 10.4. Suppose we are in the regime where H = E > 0. Show that
L⋆ = L,K⋆ = K implies that I⋆ = J,J⋆ = I. Hence the Casimir operator
I2 + J2 acts on the eigenspace

{ψ ∈ H;Hψ = Eψ}

as a selfadjoint operator. If we assume this eigenspace to be an irreducible
representation of sl2 ⊕ sl2 then the operator I2 + J2 acts by multiplication
with a real number s(s + 2)~2/2 by Schur’s Lemma with s ∈ −1 + iR or
s ∈ R. Because E = −k2m/2(s + 1)2~2 > 0 we have s ∈ −1 + iR. The
parametrization of the nonpositive real numbers by (s + 1)2~2/2 with s ∈
−1+ iR will become clear in a later section on representations of the Lorentz
algebra so3,1(R).

Exercise 10.5. Suppose g1 and g2 are two Lie algebras. Suppose V1 and
V2 are representations of g1 and g2 respectively. We define the outer tensor
product representation V1 ⊠ V2 of the direct sum g1 ⊕ g2 as follows: As a
vector space V1 ⊠ V2 = V1 ⊗ V2 and the representation is defined by

(X1, X2)(v1 ⊗ v2) = (X1v1)⊗ v2 + v1 ⊗ (X2v2)

for all x1 ∈ g1, x2 ∈ g2, v1 ∈ V1 and v2 ∈ V2. Show that the outer tensor
product is indeed a representation of the direct sum g1 ⊕ g2. Show that the
outer tensor product of two irreducible representations is again irreducible,
and each irredicible representation of the direct sum g1 ⊕ g2 arises this way.
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11 Spinning elementary particles

One can imagine an elementary particle as a small spherically symmetric ball,
so with internal symmetry Lie algebra so3 ∼= sl2. This internal symmetry can
be quantized by the unitary irreducible representation L(2s) of dimension
(2s + 1) and highest weight 2s ∈ N. The parameter s ∈ N/2 is called
the spin J of the irreducible representation L(2s) of so3 ∼= sl2. The faster
the elementary particle spins the larger the spin quantum number s ∈ N/2.
Hence an elementary particle with spin J = s ∈ N/2 can occupy (2s + 1)
states indexed by a quantum number J3 taken from the set {s, s−1, · · · ,−s},
which is just the set of eigenvalues of the Lie algebra element h/2 from sl2.
So the spin J is an index for the irreducible representation of sl2, while the
spin around the (third) axis J3 is an index for a basis in this representation
space. These notations are fairly standard.

Examples are the Higgs particle with spin 0, the electron with spin 1/2,
the photon with spin 1 or the graviton with spin 2. For example, the electron
with spin 1/2 has two quantum numbers, taken from the set {1/2,−1/2}.
Equivalently an electron has spin up (u ↔ 1/2) or spin down (d ↔ −1/2).
The notion of electron spin was proposed by Goudsmit and Uhlenbeck in
1926, at a time they were still graduate students under Paul Ehrenfest in
Leiden. There are no elementary particles known to exist with spin greater
than 2. Apparently if an elementary particle spins too fast it becomes un-
stable, preventing its existence.

Particles with integral spin are called bosons, and particles with half
integral spin are called fermions. Suppose an elementary particle with spin
s has as state space a Hilbert space H. The ”spin statistics theorem” states
that a system of n such identical particles has as state space the nth symmetric
power Sn(H) or the nth antisymmetric power An(H), depending on whether
the particle has integral spin or half integral spin respectively. An identical
system of n bosons can live happily together in a same state ψn ∈ Sn(H),
but for an identical system of n fermions no two particles can live together
in the same state, because ψ ∧ ψ ∧ ψ3 ∧ · · · ∧ ψn vanishes in An(H). This
is the famous Pauli exclusion principle: two electrons can never occupy the
same state.

The spectrum of the Kepler problem has been computed before using the
angular momentum vector L and the Lenz vector K, which together generate
for negative energy E < 0 a Lie algebra so4. The discrete energy spectrum
is located at En+1 = −1/(n + 1)2 for n ∈ N in suitable units. The (n + 1)st
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energy level is degenerated with multiplicity (n+ 1)2, and transforms under
so4 ∼= sl2 ⊕ sl2 as the irreducible representation L(n)⊗ L(n). The so3 ∼= sl2
corresponding to the angular momentum vector L lies inside sl2 ⊕ sl2 as the
diagonal, and the restriction of L(n)⊗ L(n) to this diagonal is given by the
Clebsch-Gordan rule

L(n)⊗ L(n) = L(0)⊕ L(2)⊕ · · · ⊕ L(2n) .

Therefore the spectrum of the Kepler problem can be pictorially described
by the following figure.

E

0

E1

E2

E3

E4

1s

2s

3s

2p

3p 3d

The shells indicated with an s correspond to the one dimensional irre-
ducible representation L(0). The shells indicated with a p correspond to the
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three dimensional irreducible representation L(2). The shells indicated with
a d correspond to the five dimensional irreducible representation L(4). The
shells indicated with an f correspond to the seven dimensional irreducible
representation L(6), and so on. The elements of the periodic system can
be understood to consist of a nucleus (consisting of protons and neutrons)
surrounded by a cloud of electrons. Let us assume for simplicity that the
electrons only interact with the nucleus, so the mutual interaction among
the electrons is neglected. Then the energy levels of our Kepler problem are
filled with electrons according to Pauli’s exclusion principle from the bottom
up, and for fixed energy first the shell s, subsequently the shell p, then the
shell d, and so on. For example, the hydrogen atom H has one electron in
the shell 1s, leaving one open place in shell 1s. The carbon atom C occurs
in the periodic system on place number 6. The shells 1s, 2s are completely
filled with 2 + 2 = 4 electrons, and the shell 2p is occupied with 2 electrons,
leaving four open places in shell 2p. This is the reason for the existence of
the chemical binding CH4.

In the situation of a constant electric or magnetic field along some axis
the energy levels will split up according to their degeneration, so

s p d

This splitting of spectral lines is called the Stark-Zeeman effect. It is a
consequence of symmetry breaking from so3 ∼= sl2 to gl1.
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